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Fig. 1.1 – (a) Résistivité du mercure à base température mesurée par K. H. Onnes en 1911.
(b) Instabilité de Cooper (-k,+k) proche du niveau de Fermi d’un métal (état singulet)
(c) Densité d’état électronique dans l’état supraconducteur montrant l’existence d’un gap
∆ qui est l’énergie nécessaire pour injecter ou extraire un électron non-apparié à l’état
fondamental BCS. Pour briser une paire et créer un excitation neutre, il faut donc une
énergie 2∆.

scopique, l’état supraconducteur est une phase ordonnée dans l’espace réciproque dans
laquelle les quasiparticules de vecteur d’onde opposée s’apparient formant un état quan-
tique macroscopique cohérent décrit par la fonction d’onde BCS qui s’écrit comme un
produit d’état à deux quasiparticles en k et −k construit à partir du vide :

|ψ�BCS =
�

|k|≤kF

(uk + vkc
†
k,↑c

†
−k,↓) |0�

L’état fondamental n’est plus une collection de quasiparticules libres et indépendante
mais un état quantique à N quasiparticules. Ce nouvel état ordonné possède un spectre
d’excitation caractéristique avec notamment l’apparition d’un gap en énergie ou gap su-
praconducteur entre l’état fondamental et le premier état excité (voir figure 1.1(c)). Ce
gap est en fait le paramètre d’ordre de la phase supraconductrice dans une vision de type
Ginzburg-Landau des transition de phases [7, 8]. Ce passage d’un état désordonnée sans
gap à un état ordonné avec un gap n’est pas unique à l’état supraconducteur et se retrouve
dans d’autres phases électroniques ordonnées.

Un autre exemple de phase électronique quantique due aux intéractions est le liquide
de Hall fractionnaire tel qu’il est observé dans les gaz d’électrons 2D (2DEG) dilué sous
fort champ magnétique [9]. Ces 2DEG sont généralement formés artificiellement dans des
hétérostructures semi-conductrices permettant de confiner les électrons en 2D dans des
puits quantiques. Ces liquides de Hall fractionnaires émergent dans le cas très particulier
ou tous les électrons occupent le même niveau de Landau à des remplissage non-entiers.
Ils se manifestent de manière spectaculaire par l’apparition à très basse température (≤
1K dans la plupart des cas) de plateaux quantifiés dans la résistance de Hall à des rem-
plissage fractionnaires 1/3, 2/5, 3/8... (figure 1.2(a)) Comme pour la supraconductivité,
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1. electrons form pairs caused by their interaction with the lattice.   
 
2. pairing leads to macroscopic coherence and perfect diamagnetism   
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Theorie BCS (1957) 
 
  Liquide de Fermi: instabilité de Cooper 
 
  Interaction attractive due au réseau: 

couplage électron-phonon 
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FIG. 1 Particle-particle ladder sum that gives rise to the
Cooper instability. Solid lines are electrons, dashed lines the
pair interaction.

ions, and EF the Fermi energy of the electrons. This led

to the generalization of the BCS theory by Nambu (10)

and Eliashberg (11) to take into account the frequency

dependence of the normal and anomalous (pairing) self-

energies.

The resulting strong coupling theory was developed

by Schrieffer and colleagues (12) into a precise formal-

ism for describing pairing in real systems. The success

of this theory was the prediction of anomalies in tunnel-

ing spectra caused by the frequency dependence of the

pairing self-energy associated with phonons that essen-

tially proved that conventional superconductivity orig-

inated from the electron-ion interaction (13; 14). The

theory also resulted in a quantitative tool for estimating

superconducting transition temperatures (15; 16). From

this, one can understand what limits conventional su-

perconductivity to relatively low temperatures (17). In

BCS theory, the underlying mechanism is the electron-

ion interaction. An electron polarizes the surrounding

lattice of ions. Since the ion timescale is much slower

than the electrons (as they are much heavier), the po-

larization cloud persists as the electron moves away. A

second electron can then move in and take advantage of

this attractive polarization cloud (Fig. 2). This is how

the electrons can indirectly attract each other despite the

large Coulomb repulsion between them. In essence, the

electrons avoid the Coulomb repulsion by being at the

same place, but at different times. There are two con-

sequences of this. First, the electrons are in a relative

s-wave pair state (which is a spin singlet due to fermion

antisymmetry). Second, the large Coulomb repulsion is

renormalized to a smaller value when projecting from an

energy scale EF down to a scale �ωD (18), thus allowing

a net attraction, but the resulting ‘retardation’ limits Tc.

But not all were so impressed by these developments.

The famous experimental physicist Bernd Matthias was

well known for his negative opinion of BCS theory and

its strong coupling avatars. This came from a lack of

prediction for any new superconductors. The latter was

not a surprise given the exponential dependence of Tc on

microscopic parameters (a consequence of the logarith-

mic infrared singularity), but Matthias’ opinion was that

if the strong coupling theory was so precise as claimed

by its various practitioners, why had it provided so little

guidance to him and his experimental colleagues when

searching for new superconductors? In some sense, he

went too far in asserting that only simple non-transition

elements like mercury and lead were within the sphere

e-
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FIG. 2 The electron-ion interaction leads to an induced at-
traction between electrons. Arrows joining circles represent
displaced positive ions that are attracted to the electron -
the timescale for relaxation back to their original positions is
slow compared to the electron dynamics, allowing a second
electron to take advantage of this distortion.

of BCS theory (19). It is now generally recognized that

transition metals such as niobium and its higher temper-

ature A15 cousins like Nb3Sn are well described by the

Midgal-Eliashberg formalism (20). But the lack of pre-

dictability is definitely an issue. In that context, MgB2

is a simple material that had been lying around for fifty

years before it was discovered to be a high temperature

superconductor (21). Subsequently, it was shown that

standard strong coupling theory gave a good description

of its properties (22). But even predictions based on this

success did not pan out when looking for superconduc-

tivity in related materials (23). This emphasizes that we

have a long way to go before even conventional supercon-

ductivity becomes a truly predictive science.

So having emphasized ‘conventional’, but do we mean

by this and its counterpart ‘unconventional’? In BCS

theory, the pairing is mediated by the electron-ion inter-

action, leading to a relative pair state with s-wave sym-

metry. Anisotropy of the energy gap (which is propor-

tional to the superconducting order parameter in BCS

theory) in momentum space is relatively weak. But as

soon realized after the BCS theory was published, it

could be easily generalized. In BCS theory, the electron-

ion interaction is transformed into an effective electron-

electron interaction limited to a shell in momentum space

around the Fermi surface. As such, any effective attrac-

tive interaction can be so treated, and it can even be ex-

tended to finite systems (such as the pairing of nucleons

in nuclei due to the strong interaction, where the ‘shell’

in this case is the surface region of the nucleus (24)).

Moreover, it can be easily generalized from an s-wave

state to any other symmetry for the pair state. There-

fore, by ‘unconventional’, we mean a pair state that is

not an isotropic s-wave state, and where the interaction

is something other than the conventional electron-ion in-

teraction elucidated in the 1950s.

This brings us to
3
He.
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  Cohérence macroscopique 
 
  Fonction d’onde BCS: superposition d’états de paires 

  État de paires singulet 
 
  Fonction d’onde BCS de symétrie « s »: isotrope 

  Découplage des échelles d’energie des 
électrons et du réseau: EF >> ωD 
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laquelle les quasiparticules de vecteur d’onde opposée s’apparient formant un état quan-
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L’état fondamental n’est plus une collection de quasiparticules libres et indépendante
mais un état quantique à N quasiparticules. Ce nouvel état ordonné possède un spectre
d’excitation caractéristique avec notamment l’apparition d’un gap en énergie ou gap su-
praconducteur entre l’état fondamental et le premier état excité (voir figure 1.1(c)). Ce
gap est en fait le paramètre d’ordre de la phase supraconductrice dans une vision de type
Ginzburg-Landau des transition de phases [7, 8]. Ce passage d’un état désordonnée sans
gap à un état ordonné avec un gap n’est pas unique à l’état supraconducteur et se retrouve
dans d’autres phases électroniques ordonnées.

Un autre exemple de phase électronique quantique due aux intéractions est le liquide
de Hall fractionnaire tel qu’il est observé dans les gaz d’électrons 2D (2DEG) dilué sous
fort champ magnétique [9]. Ces 2DEG sont généralement formés artificiellement dans des
hétérostructures semi-conductrices permettant de confiner les électrons en 2D dans des
puits quantiques. Ces liquides de Hall fractionnaires émergent dans le cas très particulier
ou tous les électrons occupent le même niveau de Landau à des remplissage non-entiers.
Ils se manifestent de manière spectaculaire par l’apparition à très basse température (≤
1K dans la plupart des cas) de plateaux quantifiés dans la résistance de Hall à des rem-
plissage fractionnaires 1/3, 2/5, 3/8... (figure 1.2(a)) Comme pour la supraconductivité,

!" !BCS

  Gap: amplitude de probabilité de formation de paires 
  Paramètre d’ordre 
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Supraconducteur non-conventionnel 

Définitions 
 
1.  Supraconductivité non-médiée par l’interaction électron-réseau 

2.  Symétrie de la fonction d’onde non « s  singulet » 

Les deux critères sont souvent équivalents mais pas toujours… 



  Etat supra. conventionnel: symétrie de jauge électromagnétique U(1) est brisée 

  Etat supra. non conventionnel: une symétrie additionnelle est brisée 
 

   symétrie du cristal: fonctions d’onde non s 

 
 

  

  symétrie d’invariance par rotation des spin: fonction d’onde triplet 
 
  symétrie d’invariance par renversement du temps: fonction d’onde chirale 

 
 
 
 

Symétries 

p 

d 



Symétries 
 
  Contrainte: anti-symétrie de la fonction d’onde de paires (cas avec centre 

d’inversion, parité bon nombre quantique) 

 
  Partie spatiale symétrique (s, d), partie de spin anti-symétrique : singulet 

  Partie spatiale anti-symétrique (p), partie de spin symétrique: triplet 

!BCS ="orb# spin

!k =!!k !k = !!!k
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      (for example)

symmetric 

Triplet SC 

3 états possibles: paramètre d’ordre  
vecteur d 

1 état possible: paramètre d’ordre  
scalaire 

  Cas non centro-symétrique: mélange singulet-triplet possible 

 
  Contrainte: anti-symétrie de la fonction d’onde de paires (cas avec centre 

d’inversion, parité bon nombre quantique) 

 
  Partie spatiale symétrique (s, d), partie de spin anti-symétrique : singulet 

  Partie spatiale anti-symétrique (p), partie de spin symétrique: triplet 

!BCS ="orb# spin



Lien avec le gap 
Hamiltonien champ moyen BCS généralisé pour inclure le cas triplet 

Fonction d’onde d’un paire de Cooper k 

BCS theory and discuss some of the basic properties of unconventional superconductors
[37]. For this purpose we do not invoke any particular pairing mechanism nor assume a
special symmetry of the metal. Nevertheless, in some cases complete rotation symmetry
will be imposed to do concrete calculations.

The Gap Function

The generalized BCS theory relies on an extended form of the microscopic interaction
where we consider again only the scattering of electron pairs with vanishing total
momentum which is attractive. The correspondig Hamiltonian can be written as

H = ∑
!k ,s

ξ!k c†
!k s

c!k s +
1
2 ∑

!k ,!k ′
∑

s1,s2,s3,s4

V!k ,!k ′;s1s2s3s4
c†
!k s1

c†
−!k s2

c−!k ′s3
c!k ′s4

(55)

with pair scattering matrix elements

V!k ,!k ′;s1s2s3s4
= 〈−!k ,s1;!k ,s2|V̂ |−!k ′,s3;!k ′,s4〉 . (56)

Due to Fermionic anticommutation rules the following relations must hold

V!k ,!k ′;s1s2s3s4
= −V−!k ,!k ′;s2s1s3s4

= −V!k ,−!k ′;s1s2s4s3
= V−!k ,−!k ′;s2s1s4s3

. (57)

We consider a weak-coupling approach with an interaction attractive in an energy range
defined by a cutoff εc, i.e. the scattering matrix elements are non-zero for −εc <
ξ!k ,ξ!k ′ < εc εc and εc $ EF .

Analogous to the simple case we introduce an off-diagonal mean-field

b!k ,ss′ = 〈c−!k sc!k s′〉 (58)

which leads to the mean field Hamiltonian

H ′ = ∑
!k ,s

ξ!k c†
!k s

c!k s −
1
2 ∑

!k ,s1,s2

[
∆!k ,s1s2

c†
!k s1

c†
−!k s2

+∆∗
!k ,s1s2

c!k s1
c−!k s2

]
+K + small terms ,

(59)
where

K = −1
2 ∑

!k ,!k ′
∑

s1,s2,s3,s4

V!k ,!k ′;s1s2s3s4
〈c†

!k s1
c†
−!k s2

〉〈c−!k ′s3
c!k ′s4

〉. (60)

The generalized gap ∆!k ;ss′ are defined as a function of !k and the spins (s,s′) by the
self-consistent equations

∆!k ,ss′ = − ∑
!k ′,s3s4

V!k ,!k ′;ss′s3s4
b!k ,s3s4

,

∆∗
!k ,ss′

= − ∑
!k ′s1s2

V!k ′,!k ;s1s2s′sb
∗
!k ,s2s3

.
(61)

Equation du gap BCS 

b(k, ss ') = c!kscks ' =!k" ss '

!(k, s1s2 ) = " V (k,k ', s1s2s3s4 )b(k ', s3s4 )
k ',s3s4

#

Δ	


E EF 

uk vk 
b(k, ss ') = ukvk =

!k

2Ek

!BCS (s, s ') = (uk + vkc
+
ksc

+
"ks ' )

k
# 0
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L’état fondamental n’est plus une collection de quasiparticules libres et indépendante
mais un état quantique à N quasiparticules. Ce nouvel état ordonné possède un spectre
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gap à un état ordonné avec un gap n’est pas unique à l’état supraconducteur et se retrouve
dans d’autres phases électroniques ordonnées.

Un autre exemple de phase électronique quantique due aux intéractions est le liquide
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.
(61)

Equation du gap BCS 

b(k, ss ') = c!kscks ' =!k" ss '

!(k, s1s2 ) = " V (k,k ', s1s2s3s4 )b(k ', s3s4 )
k ',s3s4

#

Fonction d’onde et gap ont les mêmes propriétés de symétrie 

BCS theory and discuss some of the basic properties of unconventional superconductors
[37]. For this purpose we do not invoke any particular pairing mechanism nor assume a
special symmetry of the metal. Nevertheless, in some cases complete rotation symmetry
will be imposed to do concrete calculations.

The Gap Function

The generalized BCS theory relies on an extended form of the microscopic interaction
where we consider again only the scattering of electron pairs with vanishing total
momentum which is attractive. The correspondig Hamiltonian can be written as

H = ∑
!k ,s

ξ!k c†
!k s

c!k s +
1
2 ∑

!k ,!k ′
∑

s1,s2,s3,s4

V!k ,!k ′;s1s2s3s4
c†
!k s1

c†
−!k s2

c−!k ′s3
c!k ′s4

(55)

with pair scattering matrix elements

V!k ,!k ′;s1s2s3s4
= 〈−!k ,s1;!k ,s2|V̂ |−!k ′,s3;!k ′,s4〉 . (56)

Due to Fermionic anticommutation rules the following relations must hold

V!k ,!k ′;s1s2s3s4
= −V−!k ,!k ′;s2s1s3s4

= −V!k ,−!k ′;s1s2s4s3
= V−!k ,−!k ′;s2s1s4s3

. (57)

We consider a weak-coupling approach with an interaction attractive in an energy range
defined by a cutoff εc, i.e. the scattering matrix elements are non-zero for −εc <
ξ!k ,ξ!k ′ < εc εc and εc $ EF .

Analogous to the simple case we introduce an off-diagonal mean-field

b!k ,ss′ = 〈c−!k sc!k s′〉 (58)
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!k ,s

ξ!k c†
!k s

c!k s −
1
2 ∑

!k ,s1,s2

[
∆!k ,s1s2

c†
!k s1

c†
−!k s2

+∆∗
!k ,s1s2

c!k s1
c−!k s2

]
+K + small terms ,

(59)
where
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2 ∑

!k ,!k ′
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V!k ,!k ′;s1s2s3s4
〈c†

!k s1
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−!k s2
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〉. (60)
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élément de matrice d’interaction de paires  



Lien avec le gap 
b(k, ss ') = !b(!k, s 's)anti-symétrie: 

= V (k,k ', s1s2s3s4 )b(!k ', s4s3)
k ',s3s4

"

= V (!k,!k ', s2s1s4s3)b(!k ', s4s3)
k ',s3s4

" = !"(!k, s2s1)

2CHAPITRE 1. INTRODUCTION : CORRÉLATIONS ÉLECTRONIQUES ET SPECTROSCOPIE RAMAN
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Fig. 1.1 – (a) Résistivité du mercure à base température mesurée par K. H. Onnes en 1911.
(b) Instabilité de Cooper (-k,+k) proche du niveau de Fermi d’un métal (état singulet)
(c) Densité d’état électronique dans l’état supraconducteur montrant l’existence d’un gap
∆ qui est l’énergie nécessaire pour injecter ou extraire un électron non-apparié à l’état
fondamental BCS. Pour briser une paire et créer un excitation neutre, il faut donc une
énergie 2∆.

scopique, l’état supraconducteur est une phase ordonnée dans l’espace réciproque dans
laquelle les quasiparticules de vecteur d’onde opposée s’apparient formant un état quan-
tique macroscopique cohérent décrit par la fonction d’onde BCS qui s’écrit comme un
produit d’état à deux quasiparticles en k et −k construit à partir du vide :

|ψ�BCS =
�

|k|≤kF

(uk + vkc
†
k,↑c

†
−k,↓) |0�

L’état fondamental n’est plus une collection de quasiparticules libres et indépendante
mais un état quantique à N quasiparticules. Ce nouvel état ordonné possède un spectre
d’excitation caractéristique avec notamment l’apparition d’un gap en énergie ou gap su-
praconducteur entre l’état fondamental et le premier état excité (voir figure 1.1(c)). Ce
gap est en fait le paramètre d’ordre de la phase supraconductrice dans une vision de type
Ginzburg-Landau des transition de phases [7, 8]. Ce passage d’un état désordonnée sans
gap à un état ordonné avec un gap n’est pas unique à l’état supraconducteur et se retrouve
dans d’autres phases électroniques ordonnées.

Un autre exemple de phase électronique quantique due aux intéractions est le liquide
de Hall fractionnaire tel qu’il est observé dans les gaz d’électrons 2D (2DEG) dilué sous
fort champ magnétique [9]. Ces 2DEG sont généralement formés artificiellement dans des
hétérostructures semi-conductrices permettant de confiner les électrons en 2D dans des
puits quantiques. Ces liquides de Hall fractionnaires émergent dans le cas très particulier
ou tous les électrons occupent le même niveau de Landau à des remplissage non-entiers.
Ils se manifestent de manière spectaculaire par l’apparition à très basse température (≤
1K dans la plupart des cas) de plateaux quantifiés dans la résistance de Hall à des rem-
plissage fractionnaires 1/3, 2/5, 3/8... (figure 1.2(a)) Comme pour la supraconductivité,

!(k, s1s2 ) = " V (k,k ', s1s2s3s4 )b(k ', s3s4 )
k ',s3s4

#

b(k, ss ') = b(!k, ss ')

b(k, ss ') = !b(!k, ss ')

singulet 

triplet 

!(k, s1s2 ) = !("k, s1s2 )

!(k, s1s2 ) = "!("k, s1s2 )

  Le gap nous donne des informations sur la symétrie de la fonction d’onde de paires 



Anisotropie du gap: cas singulet 

s isotrope d: nœuds dans le gap 
 imposée par symétrie 

s anisotrope 
avec ou sans noeuds 

  La symétrie du gap dépend du mécanisme d’appariement 



Lee, Osheroff & Richardson (1971)  

Superfluid 3He 

Le premier superfluide non-conventionnel 

  Fermions: superfluidité BCS 

  Pas de réseau + neutre: 
origine de l’appariement ?  

  2 phases superfluides: A et B 



Le premier superfluide non-conventionnel 

  Interaction Van der Waals 

  Interaction magnétique: He possède un spin ! 

•  Interaction d’échange entre spin 

•  Le spin d’He polarise son environnement créant une 
interaction attractive pour un autre atome He: paires triplet 

•  Pb auto-cohérent   

•  Proximité d’une instabilité magnétique (He: ferro.) 
 

I
χ ω

k

k+q

k’

k’−q

σ σI
(q,   )

FIGURE 4. Process of pair scattering of electrons due to spin flucutions, i.e. paramagnon exchange.

and can be rewritten in momentum space as

Hs f = − 1
Ω

I2

4

∫
dω ∑

!q ,!k ,!k ′

Re(χ(!q ,ω))

× ∑
s1,s2,s3,s4

{c†
!k+!q ,s1

!σ s1s2c!k ,s2
} · {c†

!k ′−!q ,s3
!σ s3s4c!k ′,s4

}
(40)

This scattering process is shown diagrammatically in Fig.4. In order to be specific in the
form of the interaction we approximate the spin susceptibility by its RPA form:

χ(!q ,ω) =
χ0(!q ,ω)

1− Iχ0(!q ,ω)
(41)

with

χ0(!q ,ω) ≈ N0

(
1− !q 2

12k2
F

+ i
π
2

ω
vF |!q |

)
q $ 2kF ; , ω $ εF (42)

where χ0(!q ,ω) is the bare dynamical susceptibility of the isotropic electron gas. For a
parabolic band (i.e. no nesting features) the static susceptibility is maximal for !q = 0
where χ(!q = 0,ω = 0) = N0/(1− IN0). The divergence of the susceptibility for 1 = IN0
is the well-known Stoner’s instability corresponding to the onset of ferromagnetic order.
Turning to the imaginary part of χ we find for a given !q a maximum as a function
of ω , which is interpreted as a rather broad resonance, called paramagnon, with the
approximate dispersion ω0q = 2

πIN0
(1− IN0)vFq for small !q (Fig.5).

By analogy to the electron-phonon interaction, we use the electron-paramagnon cou-
pling as a pairing potential (spin fluctuation exchange mechanism). Limiting ourselves
to the Cooper pairing channel the interaction term is written as

H ′
s f = ∑

!k ,!k ′
∑

s1,s2,s3,s4

V!k ,!k ′;s1s2s3s4
c†
!k ,s1

c†
−!k ,s2

c−!k ′,s3
c!k ′,s4

(43)

potentiel de cœur dur 
V 

r 

potentiel interatomique 
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Vi,k ——f dr exp L—i(k —k') rjV (r) . (4 4)

of the momentum transfer
~
k —k'

~
up to the maximum

value 2k~, while (as we shall see) the Landau theory permits
us to calculate VkI, only for low momentum transfer, such
an approach does not give a complete solution to the prob-
lem. However, it does bring out some extremely important
qualitative features. '
%hat we shall do is to calculate the effective interaction

V,ii(~ r —r' ~) between two quasiparticles at points r and
r' and then take the pairing interaction Vkk to be the Fourier
transform of this quantity t cf. Eq. (3.3)g:

'He atom at point r and time t will produce a molecular
held which in turn produces a spin polarization of the
neighboring liquid. This polarization persists for a fair time
before dying out (cf. Sec. II). If now at time t' a second
'He atom comes by at point r', it will be either attracted
or repelled (depending on its spin) by the liquid polariza-
tion. In this way a (spin-dependent) effective interaction
is generated between the two 'He atoms, which is additional
to the interaction (4.6).
Let us make this more quantitative. According to Eq.

(2.27), the molecular field H, i(rt) generated by a spin
polarization S(rt) is

V.;...a(r) = j fm + 4'd d'I~(r)
k' =—p'/A')

(k —= p/A',

(4.5)

(where in evaluating fi,i, , etc. , we must remember that k
and k' are practically parallel), so that according to Eq.
(4 4)

In doing this, however, we should bear in mind that the
"position" of a quasiparticle cannot be de6ned with accuracy
greater than (say) an atomic spacing, and hence that the
potential defined by Eq. (4.4) is meaningless for momentum
transfers

~
k —k'

~
of the order of k~. For much smaller

transfers, however, the expression (4.4) is meaningful. With
this caution in mind, we note that according to Sec. II two
quasiparticles of momentum k, k' have a "direct" interac-
tion via the Landau term in the Fermi-liquid Hamiltonian

H i(rt) = —y—'5—'(de/de) —'ZOS(rt),
and hence for a single atom with S(rt) = A'5 at r, t it is—(yA') —'(de/de) 'Zod —= —(yA') 'lad. Now by de6nition'
of the dynamic spin susceptibility g(r' —r, t' —t), the
magnetization M(r', t') produced at a nearby point r'
at a subsequent time t' is

M(r', t') = y'A' f x(r' —r, t' —t) II(rt) dr dt
(4.8)

SZ = —~Id'.H ., (r'~') = (~A')-'l;d'. M(rV). (4.9)

The molecular field at r', t' is —&0/(y5')' times this, and
hence the change in energy of a second atom of spin d' at
r~t ls

Vii', airect = j fix~+ hi~& d'I =— (d&/d~)

+ Zki & &'l.

Combining this with Eq. (4.8), we find that the total de-
crease of energy when we have an atom of spin d at (r, t)

(4 ~) and a second of spin d' at (r', t') (t' ) t) is
%e emphasize again that this expression is to be taken
seriously only when

~

k —k'
~
((k~. b,Z = —l 02 d. d'x(r' —r, t' —t) t 0 —= (dm/de) 'Z 0-

(4.10)
However, there is also an i+direct interaction between the

two particles, via the polarization of the liquid itself. To
make the subsequent argument clearer, let us digress for a
moment to the case of the, attractive interaction between
electrons in a metal due to exchange of virtual phonons.
This can be viewed in the following way: Suppose we have
an electron at point r and time t. This will attract the
(positive) ion lattice and create a cloud of positive charge
in the vicinity. The electron will then possibly. move on,
but because of the heavier ion mass the lattice will take
sometime to revert to its original, unpolarized state. If now
at sometime t' while the lattice is still partially polarized a
second electron comes by at some point r', it will be
attracted to the positive charge and its energy will be
lowered. In this way is generated an effective attraction
V(r —r', t —t') between the two electrons at (r, t) and
(r', t').
Just such a phenomenon can also take place in liquid

3He, the difference being that in this case the polarizable
medium is not distinct from the atoms which are attracted.
Consider for de6niteness the case of spin polarization. A

'In the literature the ensuing considerations have very often been
formulated within the language of the "pararnagnon" theory (see
Sec. II.D). However, I believe that to the extent that they are valid
they can (and should) be reformulated in the language of the Fermi-
liquid theory (cf. Nakajima, 1973).

so that this represents an effective interaction between the
particles. (In the "paramagnon" literature, —4I corresponds
to fo )For t.' ( t the argument can obviously be reversed
so that the effective interaction is just given by x(r —r,
t —t') . So we can write in general

(4.11)

where (bearing in mind that x(t' —t) —= 0 for t' & t, etc.j
x (r' —r, t' —t) =—-', Ly (r' —r, t' —t)

+ X(r —r, t —~') 7, (4.12)

From now on we shall always include a factor of (p5) ' in the def-
inition of g (so that it is genuinely the spin rather than magnetization
response function). We will also drop the subscript "sp" from now on.

This is a slightly delicate point. To see it, note that V,f& is a varia-
tional derivative (cf. Sec. IX.C), i.e.,
aE = 5 ' f dr dr' dt dt' V,ff(r' —r, t' —i) f h Slrt) f 8 S(r't') .

where the factor of ~ is added to avoid double-counting.
Because the coordinate-space potential (4.11) is time-
dependent, the resulting pairing interaction V~I, is a func-
tion of the energy transfer eI, —eI, =—Lo as well as of the

Rev. Mod. Phys. , Yol. 47, No. 2, April 1975
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Attention à l’effet « feedback » à la transition supra.  
A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975) 
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Figure 4. Heuristic snapshot of pairing of two test spins by ferromagnetic spin

fluctuations.

Γ↑↓ =
U

1− U2χ0
2(k� − k)

+
U2χ0(k� + k)

1− U2χ0
2(k� + k)

(4)

= U2

�
3

2
χs − 1

2
χc

�
+ U, (5)

where we have defined χs ≡ χ0/(1−Uχ0) and χc = χ0/(1+Uχ0), and in the last step we

have changed −k to k in the second term of Γ↑↓ because we assume we work in the even

parity (singlet pairing) channel. The total pairing vertex in the triplet (singlet) channel

is Γt = 1
2Γ↑↑ (Γs = 1

2(2Γ↑↓ − Γ↑↑)). In the original paramagnon theory, χ0(q) is the

noninteracting susceptibility of the (continuum) Fermi gas, i.e. the Lindhard function.

This function at small frequency has a maximum at q=0, meaning correlations are indeed

ferromagnetic. Thus due to the negative sign in the equation for Γ↑↑ (note χ0 > 0 and

Uχ0 < 1 to prevent a magnetic instability), pairing is attractive in the triplet channel

and singlet superconductivity is suppressed.

Antiferromagnetic spin fluctuations. In the context of heavy fermion systems it was

realized [52, 53] that strong antiferromagnetic spin fluctuations in either the weak or

strong coupling limit lead naturally to spin singlet, d-wave pairing. The weak coupling

argument has been elegantly reviewed by Scalapino [54]. Suppose the susceptibility is

strongly peaked near some wave vector Q. The form of the singlet interaction

Γs(k,k
�) =

3

2
U2 χ0(q)

1− Uχ0(q)
(6)

if we neglect terms which are small near the RPA instability Uχ0(q) → 0 [55]. This

now implies that Γs(q) is also peaked at this wavevector, but is always repulsive.

Nevertheless, if one examines the BCS gap equation for this interaction

∆k = −
�

k�

�
Γs(k,k

�)
∆�

k

2E �
k

tanh
E �

k

2T
, (7)
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!  ABM and BW triplet p-wave 
states 

ABM dk=(0,0,kx+iky) 
BW  dk=(kx,ky,kz) 

Note the ABM state has point nodes in the gap, 
is chiral, and time reversal symmetry breaking 

d=(fx+ify, 0, 0) d=(fx, fy, fz) 

Anderson- Brinkman-Morel 
(ABM) 

Balian – Werthamer 
(BW) 

J. F. Annett, Superconductivity, Superfluids and Condensates, Oxford University Press. (2004) 
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      (for example)
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Triplet SC 

3 états possibles: paramètre d’ordre  
vecteur d 

Lee, Osheroff & Richardson (1971)  

Superfluid 3He 
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Y(T)

T

FIGURE 9. Spin susceptibility in the superconducting phase: For spin singlet pairing the susceptibility
vanishes at T = 0. The precise T -dependence is determined by the gap structure. For the BW-phase the
spin susceptibility drops to 2χp/3 in all field directions. The ABM-phase has an anisotropic susceptibility
which remains constant for !d · !H = 0.

with χP = 2µ2
BN0 the Pauli spin susceptibility of the normal state. The function Y (k̂;T )

is the!k -dependent Yosida function, and Y (T) is the angle-average Yosida function. Note
that both functions depends on the precise !k -dependence of the quasiparticle spectrum.
Above T = Tc, it is equal to 1, and below Tc the T -dependence depends on the concrete
shape of the gap function. In any case for a finite gap Y goes to zero at T = 0.

The resulting spin susceptibility parallel to the field in the superconducting phase is
suppressed both for spin-singlet pairing and spin-triplet pairing (Fig.9). This is due to
the fact that in the spin-triplet superconducting state the spin orientation is confined in
the x-y-plane. We do not consider here that the Zeeman coupling might induce a change
of the superconducting phase.

We now move on to the case of the diagonal gap matrix ∆!k↑↓ = ∆!k↓↑ = 0 and
∆!k↑↑ = ∆!k↓↓ ( !d ⊥ ẑ). This corresponds to spin-triplet pairing with a spin orientation
parallel to the z-axis. The energies in the quasiparticle-spectrum (133) are now E!k s =√

ξ 2
!k s

+ |∆!k ss|2 with ξ!k s = ξ!k − sµBHz.
The expectation value (135) of the magnetization (134) now reads

Mz = µB ∑
!k

{
ξ!k↑
E!k↑

tanh
( E!k↑

2kBT

)
−

ξ!k↓
E!k↓

tanh
( E!k↓

2kBT

)}

Hz→0−→ −2µ2
BHzN0

∫ dΩ!k
4π

∫
dξ d

dξ

{
ξ

E!k
tanh

(
E!k

2kBT

)}
= χPHz

(138)

In this case the spin susceptibility remains unchanged. Indeed, if the magnetic field
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The Knight shift for oxygen-17 in YBCO (left) and SRO (right). For spin-singlet 

Cooper pairing, Knight-shift data exhibit a drop in the spin susceptibility in the 
superconducting state. Such a drop occurs in YBa2Cu3O7, but not in Sr2RuO4, 

whose superconductivity is most likely mediated by spin-triplet Cooper pairs.     
From K. Ishida et al., Nature 396, 658 (1998).  

NMR evidence for triplet pairing in SRO 
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We begin in Sec. II with a brief description of the
normal state. Section III contains the background for
understanding the three classes of theories of the super-
conducting state. The peculiar phase diagram of the su-
perconductor is the topic of Sec. IV. The physical prop-
erties of the material in each of the superconducting
phases, particularly in phase B, are discussed in detail in
Sec. V, which is thus devoted to experiments in classes
(b) and (c). In Sec. VI, we summarize the current status
of our understanding of UPt3 and suggest ways to fur-
ther that understanding.

II. NORMAL STATE

A. Crystal lattice

UPt3 crystallizes in the MgCd3-type structure shown
in Fig. 2. The uranium atoms form a closed-packed hex-
agonal structure with the platinum atoms bisecting the
planar bonds. There are two formula units per unit cell.
The compound belongs to the space group P63 /mmc
and the point group D6h . The lattice parameters are
a!5.764 Å and c̃!4.899 Å, so that c̃/a!0.845, not too
far from the hard-sphere value of 0.816. Here c̃ is the
distance between neighboring planes, not the length of
the unit cell. When discussing transport properties, the b
axis is usually defined to be perpendicular to the a axis

(i.e., parallel to the a* axis). In terms of reciprocal
space, we have a!!K and b!!M . The nearest U-U dis-
tance is between atoms in adjacent layers, equal to 4.132
Å. Correspondingly, as we shall see in Sec. II.C, the con-
ductivity is greatest along the c axis. The volume of the
unit cell is 140.96 Å3, the molar volume Vm!42.43
"10#6 m3/mol U, the mass density 1.940"104 kg/m3,
and molar weight 823.3 g. The mean atomic volume is
17.62 Å3.

In 1993, a study of the crystal structure of UPt3 using
transmission electron microscopy (TEM) discovered a
complex set of incommensurate structural modulations
at room temperature, corresponding to several q! vectors
of magnitude around 0.1"/a (Midgley et al., 1993). A
similar TEM study performed on a whisker of UPt3
found a well-developed incommensurate modulation
with a single q! !(0.1,#0.1,#0.1), i.e., of the same mag-
nitude, corresponding to a modulation of wavelength
#70 Å, coherent over microns (Ellman, Zaluska, and
Taillefer, 1995). However, a subsequent x-ray investiga-
tion of the structure of a whisker by Ellman et al. (1997)
found no trace of any incommensurate modulation, at
the level of one part in 105 (see also Walko et al., 2001).
This suggests that the structural distortions seen with
TEM may be the result of the rather violent surface
preparation techniques used to thin the samples (e.g.,
ion milling). We conclude that the intrinsic crystal struc-
ture of UPt3 is perfectly hexagonal. (Note, however, a
recent x-ray study which reports the observation of a
slight trigonal distortion; Walko et al., 2001.) Deviations
from this correspond to extrinsic lattice defects (such as
stacking faults), which of course are present to a varying
degree in different samples, as discussed in Sec. II.E.

The basic elastic properties of UPt3 are well described
by de Visser, Menovsky, and Franse (1987). Longitudinal
acoustic waves travel at a speed of 3860 and 3993 m/s
parallel and perpendicular to the c axis, respectively.
The two transverse acoustic modes propagate at 1385
m/s along the c axis and 1388 m/s (2076 m/s) along the b
axis with polarization parallel (perpendicular) to the c
axis. The Debye temperature is found to be 217 K, in
agreement with an estimate from specific heat (Sec.
II.C.1). The compressibilities are calculated by de Visser,
Menovsky, and Franse (1987):

$a!#
1
a

da
dP

!0.164, $c!#
1
c

dc
dP

!0.151,

$V!2$a$$c!0.479 Mbar#1. (2)

B. Quasiparticle spectrum

1. Band structure

UPt3 is the archetype of a heavy-fermion system. It
has the qualitative properties of a Fermi liquid, but the
magnitude of the effective masses, reflected in the spe-
cific heat and magnetic susceptibility, is very much larger
than the free-electron value. The heaviness of the elec-
trons is generally attributed to electron correlations
which come from the strong repulsions on the U sites.

FIG. 2. Crystal structure of UPt3 (a) and its first Brillouin zone
(b).
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Flouquet, 1988) pointed to the possible presence of ad-
ditional transitions, and it was the resolution of a second
jump in the specific heat, first by Fisher et al. (1989) on
two polycrystals and soon after by Hasselbach, Taillefer,
and Flouquet (1989) on a single crystal, that brought
clear thermodynamic evidence for a multiphase super-
conducting regime. The phase diagram is shown in Fig.
1. The names of the three phases shown—A, B, and
C—have now become standard.

There is now little doubt that UPt3 is an unconven-
tional superconductor with a multicomponent supercon-
ducting order parameter. One should know that this is a
rare occurrence. With the possible exception of UBe13
when doped with Th impurities in the narrow concentra-
tion window of 2–6 % Th (see Heffner and Norman,
1996), UPt3 is the only compelling instance in nature of
a superconductor with multiple phases. Because it ex-
hibits this exciting new physical phenomenon and be-
cause it can be prepared in very pure single-crystalline
form, its physical properties are now probably the best
studied of any superconducting binary compound.

The primary aim of this extensive research has been
to determine the form of the superconducting order pa-
rameter, in particular its momentum dependence. In
having such a dependence, unconventional supercon-
ductivity is to conventional superconductivity as antifer-
romagnetism is to ferromagnetism. However, the stu-
dent of magnetism has the luxury of being able to
consult neutron diffraction data from which the mag-
netic structure can be read off. In superconductivity, the
order parameter sets up no measurable field and there is
no experimental probe which couples directly to it. Pre-
cisely for the reason that experiments to determine the
order parameter structure are so indirect, a very close
connection between experiment and theory is essential.
This connection has indeed marked the nearly 20-year
history of UPt3 studies. We hope it marks this review as
well.

B. Unconventional superconductors and superfluids

Superconductivity is defined as a state in which the
order parameter spontaneously breaks gauge symmetry.

Unconventional superconductivity is defined as a super-
conducting state in which the order parameter also
breaks the crystal symmetry. The order parameter of an
unconventional superconductor may also have more
than one component, but this is not part of the defini-
tion.

The superfluidity of 3He is both unconventional (the
order parameter breaks rotation symmetry) and multi-
component (for a review, see Leggett, 1975). As a result,
it became a paradigm for research in heavy-fermion su-
perconductivity, so we briefly summarize the comparison
to UPt3 . 3He is a strongly interacting system. The en-
hancement of its specific heat over the free-particle
value depends on pressure, but is generally in the range
of 4–5. This is less than in UPt3 , where the enhance-
ment over the value given by band calculations is about
20. There are strong magnetic fluctuations in 3He but
these are concentrated near zero momentum, i.e., ferro-
magnetic fluctuations. By contrast, in UPt3 , antiferro-
magnetic fluctuations and ordering are predominant.
Magnetic interactions are surely the most important part
of the pairing interaction in 3He and almost certainly
also in UPt3 . But the difference in the momentum-space
weighting of the magnetic fluctuation spectrum in the
two means that the symmetry of the ordering in the two
systems is also likely to be different.

The electrons in UPt3 move on a lattice of consider-
able complexity; this feature is not present in 3He. Spin-
orbit coupling, a tiny (but important) force in 3He, is
very strong in UPt3 . This complicates the band structure
of UPt3 , but in some respects it simplifies the phenom-
enological theory of the superconducting state. This
paradox comes about in the following way. 3He is a spin-
triplet superfluid—the Cooper pairs are in an S!1 spin
state. The orbital wave function in this rotationally in-
variant system belongs to the l !1 representation. Due
to the weakness of the spin-orbit force, this gives a nine-
fold degeneracy before nonlinear effects are considered.
This multiplicity of low-lying degrees of freedom gives
rise to great complexity (or richness, according to your
taste) when calculating the collective modes or vortex
structures. In UPt3 , on the other hand, the spin-orbit
coupling locks the spin and orbital angular momenta,
reducing the degeneracy from 9 to 3 in the triplet case.
The absence of complete rotational symmetry reduces
this further, to two or one, which are the possible dimen-
sions of the representations of the point group. In the
spin-singlet case, there is no spin degeneracy to start
with: we end up again with a degeneracy of two or one
for the pair state.

3He exhibits two superfluid phases as a function of
temperature and pressure, the A and B phases. UPt3 has
three phases as a function of temperature and applied
magnetic field: the A, B, and C phases. However, it is
unlikely that the transitions between different superfluid
states in the two systems are caused by similar factors.
The interaction strength, as measured by the dimension-
less parameters of Fermi-liquid theory, is a very strong
function of pressure in 3He. The A-B transition is asso-
ciated with this dependence. There is no analogous de-

FIG. 1. Schematic superconducting phase diagram of UPt3 in
the magnetic field-temperature plane. Note the three distinct
superconducting phases, labeled A, B, and C, which exist be-
low an upper critical field line Hc2(T) that separates them
from the normal state. Note also that these phases all meet at
a tetracritical point (T!, H!).
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Sr2RuO4

Likely to be a px+ipy 
superconductor which is 
odd under parity and time-
reversal.  

UPt3

UPt3 : a hexagonal system 
with multiple superconducting 
phases, f-wave pairing.  

Fermi surface

Spin triplet superconductivity

Y. Maeno et al., Physics Today 54, 42 (2001) 



Supraconductivité non-centrosymétrique 
!  Non-centrosymmetric 

superconductivity 
CePt3Si  Bauer et al,  
Phys  Rev Lett  
92 027003 (2004) 

Lack of inversion 
symmetry 
implies parity P is 
non-conserved 
Singlet and triplet 
Cooper pairing 
must coexist 

!  Non-centrosymmetric 
superconductivity 

CePt3Si  Bauer et al,  
Phys  Rev Lett  
92 027003 (2004) 

Lack of inversion 
symmetry 
implies parity P is 
non-conserved 
Singlet and triplet 
Cooper pairing 
must coexist 

  Parité n’est plus un bon nombre quantique ! 

 
 
  Couplage spin-orbite de Rashba: 2 surfaces 
de Fermi avec deux états de spin 

  Mélange orbite + spin 

!  Rashba spin-orbit coupling 
In a crystal structure  
like CePt3Si spin-
orbit interactions 
break the Kramers 
degeneracy. 

The Fermi 
surface splits into 
two spin-states, 
except at the two 
points (0,0,+/-kz) 

Bauer et al. Phys. Rev. Lett. 92, 027003 (2004) 

!k ! !"k



!  The mixed s-p state has a line 
node 

•  Hayashi et al 
proposed the 
following model 

•  S and p pairing 
states exist on both 
Fermi surface 
sheets. One sheet is 
nodeless, the other 
has two horizontal 
lines of gap nodes 

Supraconductivité non-centrosymétrique 
!  Non-centrosymmetric 

superconductivity 
CePt3Si  Bauer et al,  
Phys  Rev Lett  
92 027003 (2004) 

Lack of inversion 
symmetry 
implies parity P is 
non-conserved 
Singlet and triplet 
Cooper pairing 
must coexist 

 Supra: mélange de triplet et singulet 
 Modèle « s+p » 

FS 1 FS 2 



Plan 

  Généralités et Symétries 

  Mécanismes d’appariement électroniques 

  Sondes de la supraconductivité non-conventionnelle 

  Supraconductivité à proximité d’ordres électronique 



Appariemment Coulombien: CeCu2Si2 

0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

2.0

CeCu2Si2

 

C
/T

 (J
K-1

m
ol

-1
)

T (K)

   B (T)
 0
 4

Figure 2: Specific heat divided by temperature of CeCu2Si2 in zero field and at 4 T (from [40])

= (0, 215 0, 215 0, 53) was observed associated to strong magnetic fluctuations or to long range
magnetic order with the magnetic ordering vector being connected to Fermi surface nesting [42].
Extensive NMR experiments have already demonstrated the strong interplay between antiferro-
magnetism and superconductivity [43, 44] in CeCu2Si2. However, by contrast to the Ce-115
series (see below), superconductivity and magnetic order do not coexist, but repeal each other,
i.e. superconductivity seems to push out the antiferromagnetism [45] which may be forced to
disappear via a first order transition.
High pressure experiments performed on CeCu2Si2, Ge doped, and pure CeCu2Ge2 have

shown that the (T, p) phase diagrams of these systems have two superconducting domes
[29, 12, 14, 13] as shown in Fig. 3. SC I is governed by magnetic fluctuations and SC II is
caused by valence fluctuations (see Fig. 3). Thanks to studies on CeCu2Ge2 which is at ambient
pressure an antiferromagnet, there is no doubt that the appearance of superconductivity (SC I) is
linked to the collapse of magnetism.
The disappearance of the crystal field splitting, the large linear T term of the resistivity, an

anomaly in the pressure dependence of the thermoelectric power, and the concomitant strong
decrease of the Kadowaki Woods ratio A/γ2 [12, 13] indicate that for p ∼ pV , where the second
superconducting dome SC II is centered, the Ce ions enter in a new weakly correlated electronic
phase. It is characterized by a sharp crossover from a quasi-trivalent state of the Ce ions to an
intermediate valence state which is associated with the loss of the crystal field effect, e.g. to a
change of the degeneracy from 2 to 6 being the degeneracy of the full multiplet. Even if the
occupation number of the 4 f shell drops only from n f ∼ 0.98 to n f ∼ 0.9 at p ∼ pV the con-
sequences on the spin dynamic will be large as its local temperature (TK ∼ 1/(1 − n f )) depends
critically on small variations of n f . Experimentally it has never been demonstrated by high en-
ergy spectroscopy that an abrupt valence change occurs at pV (see e.g. recent work using resonant
X-ray scattering [46]). It may correspond only to a smooth crossover [47]. However there is mi-

5

F. Steglich et al. Phys. Rev. Lett. 43, 1892 (1979) Figure 3: High pressure phase diagram of CeCu2Ge22 and CeCu2Si2 showing two superconducting domes, SC I and SC
II. SC I appears at the magnetic quantum critical point pc, SC II is centered at the critical valence transition pV . Tmax1
and Tmax2 indicate the maxima of the resistivity corresponding to the Kondo temperature and to the Kondo temperature
of the full multiplet. (adapted from Ref. [13]. Experiments on Ge doped crystals of CeCu2Si2 show the separation of
both domes [14].

croscopic evidence by NQR experiments that the electrical field gradient and the crystal field
splitting change around p = 4 GPa [48]. At least it is well established that in CeCu2Si2 spin and
valence criticality are well separated [14]. In the following examples of CeIn3 and CePd2Si2,
they cannot be clearly distinguished.

Up to now, only a few orbits with light carriers have been detected by quantum oscillations
in CeCu2Si2 due to the combined effects of the large masses and and single crystals with rather
poor residual resistivity ratios [49]. As will be shown below, the high quality of the crystals of
the Ce-115 family gives the opportunity to correlate the occurrence of superconductivity with the
Fermi surface topology.

Finally, concerning the superconducting order parameter, singlet pairing with nodes of the
gap occurs, but there is no microscopic evidence of the exact location of line or point nodes.
Recent inelastic neutron experiments indicates also the occurrence of superconducting resonance
characteristic of singlet pairing at the antiferromagnetic wave vector Qaf [50] but the signal is
rather broad and extends ten times the gap value whereas in CeCoIn5 a much sharper, resolution-
limited resonance has been found [51] (see below chapter 6).
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  Supraconductivité de fermions lourds provenant des électrons 4f de Ce 
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antisymmetric under exchange of the two electrons yields following conditions:

ψ(!r ′,s′;!r ,s) = −ψ(!r ,s;!r ′,s′) = f (−{!r −!r ′})χs′,s

⇒






f (−!r ) = f (!r ), χs,s′ = −χs′,s, l = 0,2,4, ..., S = 0

f (−!r ) = − f (!r ), χs,s′ = χs′,s, l = 1,3,5, ..., S = 1

(31)

As parity is given by (−1)l , even partity means spin singlet and odd parity means
spin triplet pairing. From this viewpoint we define a conventional superconductor as a
condensate of l = 0 Cooper pairs, i.e. the most symmetric pairing state. Unconventional
are all other states with l > 0. This distinction is not restricted to rotation symmetric
systems, but can be applied in the modified form also to real metals which possess
(lower) point group symmetry of the crystalline lattices. There the angular momentum
is replaced by the irreducible representations of the point group, as we will see later.

Alternative mechanisms

If the short-ranged Coulomb repulsion jams the electron-phonon interaction for pair-
ing, alternative pairing interactions have to be found. Both interactions are of less im-
portance, if pairing is realized in a channel different from the most symmetric one.

g!k ;s,s′ = 〈c−!k ,sc!k s′〉 with ∑
!k

g!k ;s,s′ = 0 (32)

which means that there is no pairing amplitude for electrons on the same position.
Mechanisms giving rise to this kind of pairing should provide a not too short-ranged
interaction.

Kohn and Luttinger asked in 1965 the question whether pairing would be possible
based poorly on Coulomb interaction [32]. Their pairing mechanism is based on a
part of the renormalized Coulomb interaction which we had ignored. Due to the sharp
Fermi edge in metals the renormalized Coulomb interaction possesses also a long-range
oscillatory tail. These are the Friedel oscillations giving rise to a potential of the large-r
form

V (r) =
cos2kFr

r3 . (33)

which has obviously both attractive as well as repulsive parts. Pairing states of higher
angular momentum would be able to take advantage of the attractive portion of V (r).
The resulting critical temperature obtained from this interaction is

Tc

TF
% e−(2l)4

(34)

with l > 0. Although the relevant energy scale is the Fermi energy or band width, this
mechanism is irrelevant for real superconductivity, since even for l = 1 the achievable Tc
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Appariemment Coulombien: Hubbard 

Berk et Schireffer (1966); champ moyen « BCS » sur le terme en U  
(« à la Stoner », couplage faible)  

Berk and Schrieffer. Phys. Rev. Lett. 17, 433 (1966) 

Modèle de Hubbard 

charge-transfer antiferromagnetic insulator with a gap set by
the energy to move the hole from a Cu to a neighboring O.
The large on-site Cu Coulomb interaction leads to well-
formed S ¼ 1=2 moments on the Cu which are coupled by
a Cu-O-Cu superexchange interaction (Anderson, 1950). A
weak interlayer exchange coupling leads to a Néel transition
with a checkerboard antiferromagnetic spin arrangement in
the CuO2 plane. When a material such as La2"xSrxCuO4 is
hole doped by adding Sr, the antiferromagnetism is rapidly
suppressed and below a temperature T# one enters a pseudo-
gap phase. This phase is believed to reflect the approach to the
Mott state and provides a medium in which a variety of
instabilities can appear as the temperature is lowered. These
continue to be studied and among other correlations are
believed to contain fluctuating charge and !-phase shifted
antiferromagnetic stripes (Emery, Kivelson, and Tranquada,
1999) which at low temperatures may order leading to a
reconstruction of the Fermi surface (Moon and Sachdev,
2010; Norman, Lin, and Millis, 2010; Yao, Lee, and
Kivelson, 2011) or if disordered form a spin glass
(Tranquada, Ichikawa, and Uchida, 1999). While evidence
of superlattice order appears in some underdoped cuprates
[La1:875Ba0:125CuO4 (Li et al., 2007)], there are others,
including ordered stoichiometric crystals [YBa2Cu4O8

(Tomeno et al., 1994)] in which a pseudogap appears in
the apparent absence of a translational broken symmetry.
This has led to various interesting theoretical proposals of
Fermi-surface reconstruction without translational symmetry
breaking (Yang, Rice, and Zhang, 2006; Sachdev, 2010). In
the overdoped regime the system is metallic with a large
Fermi surface and spin fluctuations.

Early on Anderson suggested that a minimal model which
contained the essential cuprate physics was the single-band
Hubbard model. In this case, one focuses on the Cu dx2"y2

orbital and hybridizes it through the O anion network leading
to a single dx2"y2 band. Then adding an on-site Coulomb

interaction U, one has the well-known 2D single-band
Hubbard model (Hubbard, 1963)

H ¼ "
X

ijs

tijðdyisdjs þ dyjsdisÞ þ U
X

i

ni"ni#: (5)

Here tij are tight-binding one-electron hopping parameters

between sites i and j which are adjusted to fit the band
structure and U is an on-site Coulomb interaction. In

Eq. (5), dyis creates an electron with spin s in a dx2"y2 orbital

on the ith site, djs destroys one on the jth site, and ni" ¼ dyi"di"
is the occupation number for a spin up electron on the ith site.

Although the single-band Hubbard model, Eq. (5), is
certainly a minimal model, it exhibits a number of the basic
phenomena which are seen in the cuprate materials. At half
filling, in the strong-coupling limit it maps to the 2D spin 1=2
Heisenberg model on a square lattice. Numerical studies of
the Heisenberg model (Oitmaa and Betts, 1978) found evi-
dence of long-range antiferromagnetic order at T ¼ 0. In
addition, analytic calculations (Arovas and Auerbach, 1988;
Chakravarty, Halperin, and Nelson, 1988) provided the basis
for understanding a range of experimental results for the
undoped cuprates. Alternatively in weak coupling, it was
shown (Raghu, Kivelson, and Scalapino, 2010) that the doped
Hubbard model has a transition to a dx2"y2 superconducting

phase. While this result was obtained in the limit U=t ! 0, it
establishes the fact that this simple model can exhibit a dx2"y2

superconducting phase.
As noted there have been a variety of numerical ap-

proaches used to study the Hubbard model.4 At half filling,
the particle-hole symmetry eliminates the so-called ‘‘fermion
sign’’ problem for a Hubbard model with a near-neighbor
one-electron hopping. In this case, DQMC (Blankenbecker,
Scalapino, and Sugar, 1981) calculations can be carried out
on large lattices down to low temperatures. These calcula-
tions find that the half-filled 2D Hubbard model with a near-
neighbor hopping t and an on-site Coulomb interaction U of
the order of the bandwidth 8t is a Mott insulator and has a
ground state with long-range antiferromagnetic order (Hirsch,
1985). In addition, in this intermediate coupling regime
where U is of the order of the bandwidth, one sees both the
local and itinerant characters of the magnetism. Figure 14
shows Monte Carlo results for the square of the z component
of the local moment mzð‘Þ ¼ n‘" " n‘# versus temperature
for a range of U=t values (Paiva et al., 2001). As expected,
when the temperature decreases below a scale set by U, hm2

zi
increases. However, at a lower temperature scale hm2

zi is
found to increase further for weak coupling, while it de-
creases for strong coupling. In the weak-coupling itinerant
case, this increase is associated with the formation of short-
range particle-hole magnetic correlations. In this case, the
energy gain at low temperatures is proportional to hm2

zi so that
hm2

zi increases further as T decreases. Alternately, in the
strong-coupling case, below an energy scale U one has
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FIG. 14 (color online). The temperature dependence of the square
of the local moment of a half-filled Hubbard model for different
values of the on-site Coulomb repulsion U (in units where t ¼ 1).
As the temperature decreases below 'U=2, local on-site correla-
tions lead to an increase in hm2

zi. Then on a lower temperature scale,
nonlocal spin correlations develop and for weak coupling hm2

zi
increases, while for strong coupling it decreases. This crossover
marks a change from an itinerant to a more local magnetic behavior.
From Paiva et al., 2001.

4Here we focus on Hubbard-like models, but it is important to
note that the strong coupling t-J limit of the Hubbard model exhibits
similar basic phenomena. See, for example, Sorella et al. (2002)
and Spanu et al. (2008).
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With this in mind, this review has the more limited goal of
understanding the momentum, frequency, and orbital struc-
ture of the interaction that is responsible for pairing in the
models discussed in Sec. III. To the extent that these models
exhibit the basic low-energy properties which are found in
these materials, one can argue that the interaction responsible
for pairing in the models will reflect the pairing interaction in
the real materials.

In this section, we show DCA results for the pairing inter-
action. The basic assumption of the DCA is that the self-
energy and irreducible vertex functions are short ranged and
can be well represented by a finite size cluster. Under this
assumption, one sets up an effective cluster problem as an
approximation for the bulk thermodynamic limit in order to
calculate these quantities. This is done by representing the
bulk lattice by an effective cluster embedded in a mean-field
bath, which is designed to represent the remaining degrees of
freedom and is determined self-consistently. In contrast to
other finite size methods, in which one carries out calculations
on finite size lattices and then tries to scale up in size, the
DCA, for a given cluster size, gives approximate results for the
bulk thermodynamic limit.

The DCA treats spatial correlations on length scales within
the cluster accurately and nonperturbatively and describes
longer-ranged correlations on a mean-field level. It becomes
exact in both the weak-coupling (U=t ¼ 0) and strong-
coupling (t=U ¼ 0) limits. For finiteU=t, one can in principle
obtain exact results by carrying out calculations for different
size clusters and then extrapolating to infinite cluster size.
Convergence with cluster size depends on the specific prob-
lem, but is usually faster than with finite size methods,
because of the inclusion of the remaining degrees of freedom
in terms of a mean field. This was discussed for the 3D half-
filled Hubbard model in Kent et al. (2005) and Fuchs et al.
(2011), where the accuracy of the DCA was benchmarked
against finite size methods for several different quantities. In
particular, it was shown that well-converged results for the
antiferromagnetic TN vs U phase diagram can be obtained
from relatively small clusters. As noted, in this approach the
cluster is embedded in reciprocal space and one obtains
momentum space results on a coarse-grained Brillouin
zone. It is convenient to work in momentum space and since
the pairing interaction is expected to be short ranged it is
actually more amenable to cluster calculations than the
long-range pair field correlations. Like the FRG calculations,
the DCA provides an unbiased treatment of the competing
instabilities. In addition, it takes account of self-energy
and interaction effects within the cluster while treat-
ing the remaining degrees of freedom within a dynamic
meanfield.

A. The single-band Hubbard model

For the single-band Hubbard model DCA numerical simu-
lations have been used to determine the momentum and
frequency dependence of the pairing interaction (Maier,
Jarrell, and Scalapino, 2006a). Formally, this interaction is
given by the irreducible particle-particle scattering vertex
!ppðk; k0Þ shown on the left-hand side of Fig. 17. It consists
of all Feynman diagrams that cannot be separated into two

parts by cutting just two particle lines. Here k ¼ ðk; i!nÞwith
!n ¼ ð2nþ 1Þ!T a fermion Matsubara frequency and one is
interested in the scattering of a pair in a singlet, zero center-
of-mass momentum and energy state with relative momentum
and Matsubara frequency k ¼ ðk; i!nÞ to a final state with
k0 ¼ ðk0; i!n0Þ. Results obtained from a 64-site 8% 8 numeri-
cal DCA for !ppðk; k0Þ with !n ¼ !n0 ¼ !T at a filling
hni ¼ 0:85 and U ¼ 4t are shown on the right-hand side
of Fig. 18.5 Here one sees that as the temperature is lowered,
the singlet pairing interaction increases for large momentum
transfers. This is a reflection of the growth of the short-range
antiferromagnetic spin fluctuations as seen in a similar plot of
the spin susceptibility "ðqÞ shown on the left-hand side of
Fig. 18. Taking the Fourier transform of !ppðk; k0Þ,

!ppð‘x; ‘yÞ ¼
1

N

X

kk0
eik&‘!ppðk; k0Þeik0&‘; (11)

leads to the real space picture of the pairing interaction
illustrated in Fig. 19. Here !ppð‘x; ‘yÞ is the strength of the

!n ¼ !n0 ¼ !T pairing interaction between a singlet formed
with one electron at the origin and the other at site ð‘x; ‘yÞ. It
is large and repulsive if the electrons occupy the same site but
attractive if they are on near-neighbor sites reflecting the
peaking of !ppðk; k0Þ for k' k0 ( ð!;!Þ.

As shown in Fig. 17, the pairing interaction !ppðk; k0Þ can
be separated into a fully irreducible two-fermion vertex "irr

and partially reducible particle-hole exchange contributions.
Here the fully irreducible part "irr is defined as the sum of all
diagrams that cannot be separated into two pieces by cutting
any combination of two lines (particle or hole). For a spin
rotationally invariant system, the particle-hole exchange con-
tributions appearing on the right-hand side of Fig. 17 can be
combined into an S ¼ 1magnetic spin-fluctuation piece 3

2#m

and a spin S ¼ 0 charge density fluctuation contribution 1
2#d,

FIG. 17. The pairing interaction is given by the irreducible
particle-particle vertex !pp. Here !pp is decomposed into a fully
irreducible two-fermion vertex "irr plus contributions from the
S ¼ 1 and S ¼ 0 particle-hole channels. !ph are irreducible
particle-hole vertices, ! is the full vertex, and the solid lines are
fully dressed single-particle propagators.

5Just as the electron-phonon interaction strength is characterized
by

Rðd!=!Þjgqj2½ImDðq;!Þ=!*¼jgqj2ReDðq;0Þ¼'2jgqj2=!q

and a cutoff frequency of order !D, the pairing interaction strength
for the Hubbard model is given by !ðk; k0Þ with !n ¼ !n0 ¼ !T.
The cutoff in the Matsubara frequency is set by the spin-fluctuation
spectrum as shown in Fig. 22.
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Interaction d’appariement singulet: 

frequencies !m and might naively appear to be repulsive.7

Nevertheless, at a critical temperature Tc one finds that there
is a solution !ð!nÞ of the linearized BCS gap equation

# Tc

X

n0

!Nð0Þ"ð!n #!n0Þ
j!n0 j

!ð!n0Þ ¼ !ð!nÞ: (A4)

This is because, while "ð!mÞ is a positive function of !m, it
increases over an energy scale set by the characteristic pho-
non frequency #. In this case, the pair scattering strength is
large and positive for processes in which a pair is scattered
from a smaller Matsubara frequency !n0 to a larger one !n

such that j!n #!n0 j>#. Then if !ð!n0Þ is positive, the gap
equation (A4) can be satisfied provided !ð!nÞ is negative as
shown in Fig. 36(b). This ‘‘sign-changing’’ frequency struc-
ture of the gap reflects the internal structure of a pair in which
the electrons are dynamically correlated to avoid the ‘‘instan-
taneous’’ screened Coulomb interaction while taking advan-
tage of the retarded phonon-mediated attraction.

Another way to see that "ð!mÞ describes an attractive
pairing interaction is to replace i!m by !þ i" and take
the Fourier transform to determine the time dependence of
the pairing interaction (Scalapino, 1994)

"ðtÞ ¼
Z d!

2!
e#i!t

!
2jgj2#

ð!þ i"Þ2 ##2 þ Vc

"
; (A5)

then

Re"ðtÞ ¼ #jgj2 sin#te#"t þ Vc"ðtÞ; (A6)

with "ðtÞ a broadened " function of width ##1
F . For a more

general phonon spectrum peaked at # with a width !#, the
first term decays for times larger than &!##1. Taking these
features into account, Fig. 37 shows a schematic plot of
Re"ðtÞ in which one sees that the repulsive Coulomb inter-
action lasts for only a brief time of the order of the inverse of
the Fermi energy while the attractive part of the interaction
lasts for a much longer time set by the phonon spectral
weight.

2. The spin-fluctuation exchange pairing interaction

In weak coupling, the leading RPA diagrams for the irre-
ducible singlet particle-particle scattering vertex " are shown
in Fig. 38. These give

"ðk; k0Þ ¼ U

1# U2$2
0ðk0 þ kÞ þ

U2$0ðk0 # kÞ
1# U$0ðk0 # kÞ :

(A7)

Here k ¼ ðk; i!nÞ and k0 ¼ ðk0; i!n0 Þ and

$0ðq; i!mÞ ¼
1

N

X

k

fð"kþqÞ # fð"kÞ
i!m # "kþq þ "k

: (A8)

For a single, even frequency pair, the gap function is even
under k and goes to #k, so that one can replace k0 þ k by
k0 # k in the first term of Eq. (A7). Then, rearranging the
terms in Eq. (A7) gives

"ðk;k0Þ¼3

2
U2 $0ðk0#kÞ

1#U$0ðk0#kÞþ
U2

2

$0ðk0#kÞ
1þU$0ðk0#kÞþU:

(A9)

The first term is the contribution of the spin fluctuations with
$0ð1# U$0Þ#1 the RPA spin susceptibility. The second term
represents the charge fluctuations and U is the on-site
Coulomb interaction. This interaction was first used by
Berk and Schrieffer (1966) to describe the depression of Tc

due to spin fluctuations for s-wave superconductivity in Pd.
For the 2D Hubbard model doped near half filling, the

dominant contribution to " comes from the first term which
peaks near ð!;!Þ reflecting the short-range antiferromagnetic

FIG. 36. (a) The vertex "ð!mÞ multiplied by the single-particle
density of states Nð0Þ vs !m ¼ 2m!T. (b) The resulting gap !ð!nÞ
associated with "ð!mÞ vs !n ¼ ð2nþ 1Þ!T. The change in sign of
!ð!nÞ is such that the gap Eq. (A4) can be satisfied even though
Nð0Þ"ð!mÞ is positive for all !m.

Ω 1

ReΓ(t)

µ 1
F t

FIG. 37. Schematic plot of Re"ðtÞ vs t. The interaction is repulsive
for times less than the order of ##1

F and then attractive for times
between ##1

F and the inverse of a typical phonon frequency ##1.

7In numerical solutions of the Eliashberg equations it is convenient
to cut off the frequency integrals at a frequency!c of order 5 times the
Debye frequency and replace# ¼ Nð0ÞVs by a renormalized pseudo-
potential #' ¼ #½1þ# lnð#F=!cÞ)#1 (Bogolinkov, Tolmachev,
and Shirkov, 1959;Morel and Anderson, 1962). This renormalization
takes into account the fact that by decreasing the energy cutoff from
#F to !c one has eliminated Coulomb scattering processes which
keep the electrons apart. The phonon-mediated part of the interaction
is unchanged since !c is well above the dynamic range of the
phonons. From a renormalization point of view, as the cutoff fre-
quency is reduced #2jgj2Nð0Þ=#þ#' becomes negative and one
has an effective low-energy theory with an attractive pairing interac-
tion. In this Appendix, we are looking at the dynamics that underlies
this renormalization.
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Appariemment et susceptibilité 

susceptibilité électrons libres (Lindhard) !!0 (Q) =
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kk
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4.2. COMPETING INSTABILITIES 43

Spin density wave vs anti-ferromagnetism

A finite Q instability means that there is a spatially varying magnetisa-
tion, and since the most unstable Q is controlled by the dispersion, this
vector is likely to be commensurate with the lattice. The antiferromagnetic
behaviour of a half filled insulator can also be seen as a spatially varying
magnetisation, however there is a notable difference — that antiferromag-
netism was strong, in the sense that each site had its complete magnetic
moment pointing in alternating directions. The “spin-density wave” that
the instability in this section describes grows continuously from zero, and
so generally represents a small, partial magnetisation of each site.

It is however worth noticing that, as seen below, half filling is a state
particularly susceptible to spin density weave ordering, and with increas-
ing interaction strength, there is a crossover from the spin-density wave
ordering of a weakly interacting half-filled itinerant electron system to the
antiferromagnetism of a half filled Mott insulator.

Nesting and spin density waves

An instability is likely to develop if there exists a large region where �k =
�k+Q for a constant vector Q. In one dimension, the problem is particularly
simple; if we consider a tight binding band structure, �k = −t cos(ka), then
as shown in Fig. 4.1, there is an instability at Q = 2kF .

kk

Figure 4.1: Nesting in one dimension, showing wavevector con-
necting equal energy states

It is unsurprising that in 1D ferromagnetism is overcome by spin density
wave ordering, since we already know that one dimensional systems should
not show ferromagnetic ordering. In higher dimensions, such an instability
relies on there being a part of the Fermi surface which is parallel to another
part, so that a constant wavevector can connect particles and holes across
the Fermi sea. Examples of how this may occur are shown in Fig. 4.2; note
that at half filling (at least for tight binding band structures) one will have
nesting across the entire Fermi surface.

Q 

ε	


k 

Dielectric function in various dimensions: Above we have treated the dielectric function for a
three-dimensional parabolic band. Similar calculations can be performed for one- and two-
dimensional systems. In general, the static susceptibility is given by

χ0(q,ω = 0) =
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4
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�

(3.65)

where s = q/kF . Interestingly χ0(q, 0) has a singularity at q = 2kF for all dimensionalities.
The singularity becomes weaker as the dimensionality is increased. In one dimension, there is
a logarithmic divergence, in two dimensions there is a kink, and in three dimensions only the
derivative diverges. Later we will see that these singularities may lead to instabilities of the
metallic state, in particular for the one-dimensional case.

0

F

!(   ,0)q

!(0,0)

3D

2D

1D

q

1

0 2k

Fig. 3.6: Lindhard functions for different dimensions. The lower the dimension the stronger
the singularity at q = 2kF .

3.3 Lattice vibrations - phonons in metals

The atoms in a lattice of a solid can vibrate around their equilibrium positions. We will describe
in the following by treating the lattice as a continuous elastic medium. This approximation is
sufficient to obtain some of the essential features of the interaction between lattice vibrations
and electrons, in particular screening effects. The approach is limited, however, to mono-atomic
unit cells because the internal structure of a unit cell is neglected.

3.3.1 Vibration of a isotropic continuous medium

When an elastic medium is deformed an infinitesimal volume element d3r around the point r is
generally moved to a different point r�(r). The deformation may be described by defining the
displacement field u(r) = r�(r)− r at any point of the (undeformed) medium. In general, u is
also a function of time. In the simplest form of an isotropic medium the elastic energy for small
deformations is given by

Eel =
λ

2

�
d3r {∇ · u(r, t)}2 (3.66)

54

!!0 (Q)
!!0 (Q = 0)

  Importance de la dimensionnalité / topologie de la surface de Fermi 
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correlations. A plot of !ðq; 0Þ versus momentum transfer q
is given in Fig. 39 for q along a path in the Brillouin zone
shown in the inset. This interaction is positive for all
momentum transfers. Therefore, for there to be a transition
to a superconducting state, the gap function "ðkÞ must have a
change of sign on the Fermi surface in order to satisfy the
BCS equation.

"ðkÞ ¼ $ 1

N

X

k0

!ðk$ k0Þ"ðk0Þ
2"k

tanhð!c"k=2Þ: (A10)

For the nearly half-filled 2D Hubbard model, Eq. (A10) leads
to the well-known "ðkÞ ¼ "0ðcoskx $ coskyÞ dx2$y2 gap. In

this case, ðk ";$k #Þ pairs with k near ð"; 0Þ which have a
negative gap are strongly scattered by the antiferromagnetic
spin fluctuations to ðk0 ";$k0 #Þ pairs with k0 near ð0;"Þwhich
have a positive gap, satisfying Eq. (A10). This sign change in
the momentum dependence of "ðkÞ reflects an internal struc-
ture of a pair in which the electrons are spatially correlated
such that they avoid occupying the same site while taking
advantage of the nonlocal attractive regions of the interaction.
It is a dx2$y2 pair rather than an extended s-wave coskx þ
cosky pair because it is made up from states near the nearly
half-filled Fermi surface. This structure of the interaction
is illustrated in Fig. 40, which shows the spatial Fourier

transform of !ðqÞ. Here one member of the pair is located
at the origin and another at site ð‘x; 0Þ.

Thus both the conventional and unconventional supercon-
ductors have ‘‘sign-changing gaps.’’ For the conventional case
this sign change occurs in the frequency dependence of the
gap and reflects the dynamic correlations of the electrons
which form the Cooper pairs. In the case of the unconven-
tional superconductors, the sign change occurs in the momen-
tum dependence of the gap and reflects the spatial correlations
of the paired electrons. Naturally, there are also dynamic
correlations since the spin fluctuations are retarded and simi-
larly in the phonon case there are some spatial correlations
due to the momentum dependence of the electron-phonon
interaction. However, the characteristic feature of an antifer-
romagnetic spin-fluctuation interaction is its momentum de-
pendence which leads to a spatially nonlocal pairing
interaction, while the characteristic feature of the phonon-
mediated pairing interaction is its frequency dependence
which leads to a retarded pairing interaction.
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FIG. 38. The RPA diagrams for the Hubbard model pairing interaction. The solid lines are bare single-particle Green’s functions and the
dashed lines represent the interaction U. Here one clearly sees that the electrons which make up the spin-fluctuation pairing interaction are the
same electrons that pair.
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FIG. 39. !ðq; 0Þ vs q for q along a path in the Brillouin zone
which is shown in the inset. An effective interaction that is peaked at
a large momentum transfer is the origin of the unconventional
superconductivity discussed in this review. Here U ¼ 3t, t0 ¼ 0,
hni ¼ 0:87, and T ¼ 0:25t.
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FIG. 40. The spatial Fourier transform !ð‘x; ‘y ¼ 0Þ vs ‘x. Here
one member of a pair is at the origin and !ð‘x; 0Þ is the interaction
energy when a second electron is added in a single state at site ‘x.
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correlations. A plot of !ðq; 0Þ versus momentum transfer q
is given in Fig. 39 for q along a path in the Brillouin zone
shown in the inset. This interaction is positive for all
momentum transfers. Therefore, for there to be a transition
to a superconducting state, the gap function "ðkÞ must have a
change of sign on the Fermi surface in order to satisfy the
BCS equation.
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For the nearly half-filled 2D Hubbard model, Eq. (A10) leads
to the well-known "ðkÞ ¼ "0ðcoskx $ coskyÞ dx2$y2 gap. In

this case, ðk ";$k #Þ pairs with k near ð"; 0Þ which have a
negative gap are strongly scattered by the antiferromagnetic
spin fluctuations to ðk0 ";$k0 #Þ pairs with k0 near ð0;"Þwhich
have a positive gap, satisfying Eq. (A10). This sign change in
the momentum dependence of "ðkÞ reflects an internal struc-
ture of a pair in which the electrons are spatially correlated
such that they avoid occupying the same site while taking
advantage of the nonlocal attractive regions of the interaction.
It is a dx2$y2 pair rather than an extended s-wave coskx þ
cosky pair because it is made up from states near the nearly
half-filled Fermi surface. This structure of the interaction
is illustrated in Fig. 40, which shows the spatial Fourier

transform of !ðqÞ. Here one member of the pair is located
at the origin and another at site ð‘x; 0Þ.

Thus both the conventional and unconventional supercon-
ductors have ‘‘sign-changing gaps.’’ For the conventional case
this sign change occurs in the frequency dependence of the
gap and reflects the dynamic correlations of the electrons
which form the Cooper pairs. In the case of the unconven-
tional superconductors, the sign change occurs in the momen-
tum dependence of the gap and reflects the spatial correlations
of the paired electrons. Naturally, there are also dynamic
correlations since the spin fluctuations are retarded and simi-
larly in the phonon case there are some spatial correlations
due to the momentum dependence of the electron-phonon
interaction. However, the characteristic feature of an antifer-
romagnetic spin-fluctuation interaction is its momentum de-
pendence which leads to a spatially nonlocal pairing
interaction, while the characteristic feature of the phonon-
mediated pairing interaction is its frequency dependence
which leads to a retarded pairing interaction.
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FIG. 38. The RPA diagrams for the Hubbard model pairing interaction. The solid lines are bare single-particle Green’s functions and the
dashed lines represent the interaction U. Here one clearly sees that the electrons which make up the spin-fluctuation pairing interaction are the
same electrons that pair.
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which is shown in the inset. An effective interaction that is peaked at
a large momentum transfer is the origin of the unconventional
superconductivity discussed in this review. Here U ¼ 3t, t0 ¼ 0,
hni ¼ 0:87, and T ¼ 0:25t.
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FIG. 40. The spatial Fourier transform !ð‘x; ‘y ¼ 0Þ vs ‘x. Here
one member of a pair is at the origin and !ð‘x; 0Þ is the interaction
energy when a second electron is added in a single state at site ‘x.
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U=5t 
n=0.85 

  Modèle de Hubbard plan carré en champ moyen (RPA): susceptibilité de spin 
diverge en Q 

 
  Proximité d’un ordre AF: l’interaction de paire est exaltée  Q 

  Attraction non-locale  
D. J. Scalapino, Rev. Mod. Phys. 84, 1383 (2012)  



Appariemment Coulombien: Hubbard 
  Modèle de Hubbard plan carré: susceptibilité de spin diverge 
 
  L’interaction de paire diverge aussi 

fully irreducible vertex !irr, the S ¼ 0 charge fluctuations
1
2"d, and the S ¼ 1 spin fluctuations 3

2"m. As noted, it is the
increase of # with momentum transfer that gives rise to the
attractive near-neighbor pairing and it is clear from Fig. 20

that this comes from the S ¼ 1 part of the interaction.
The fully irreducible vertex is essentially independent of
momentum transfer and so it contributes only to the on-site
repulsion, while the S ¼ 0 charge part decreases at large
momentum giving rise to a small repulsive near-neighbor
interaction.

In these numerical calculations, one also obtains the
dressed single-particle Green’s function Gðk; i!nÞ. Given G
and #pp, one can determine the Bethe-Salpeter eigenvalues
and eigenfunction in the particle-particle channel by solving

$T

N

X

k0
#PPðk;k0ÞG"ðk0ÞG#ð$k0Þ!"ðk0Þ¼#"!"ðkÞ: (13)

This is basically the fully dressed BCS gap equation and
when the leading eigenvalue goes to 1 the system becomes
superconducting. One can also construct similar Bethe-
Salpeter equations for the charge and magnetic particle-hole
channels. Figure 21 shows a plot of the leading eigenvalues
associated with the particle-particle pairing channel and the
particle-hole charge S ¼ 0 and spin S ¼ 1 channels for
U=t ¼ 4 and a filling hni ¼ 0:85. As the temperature is
lowered, the particle-hole S ¼ 1 antiferromagnetic channel
with center-of-mass momentum Q ¼ ð$;$Þ is initially domi-
nant. However, at low temperatures the Q ¼ 0 pairing chan-
nel rises rapidly and the divergence of the antiferromagnetic
channel saturates. The charge channel eigenvalue remains

FIG. 19 (color online). The real space structure of the pairing
interaction obtained from the Fourier transform Eq. (11) of
#ppðk; k0Þ at a temperature T ¼ 0:125t for U ¼ 4t and hni ¼
0:85. Here there is an attractive pairing interaction for a singlet
formed between an electron at the origin and a near-neighbor site.
The peak in #pp shown in Fig. 18 leads to a pairing interaction
which oscillates in space.

FIG. 20 (color online). The momentum dependence of the various contributions that make up the irreducible particle-particle pairing vertex
#pp. (a) The irreducible particle-particle vertex #pp vs q ¼ K $ K0 for various temperatures with !n ¼ !n0 ¼ $T. Here K ¼ ð$; 0Þ and K0

moves along the momentum values of the 24-site cluster which lay on the dashed line shown in the inset of Fig. 21. Note that the interaction
increases with the momentum transfer as expected for a d-wave pairing interaction. (b) The q dependence of the fully irreducible two-fermion
vertex !irr. (c) The q dependence of the charge density (S ¼ 0) channel 1

2"d for the same set of temperatures. (d) The q dependence of

the magnetic (S ¼ 1) channel 3
2"m. Here one sees that the increase in #pp with momentum transfer arises from the S ¼ 1 particle-hole

channel. From Maier, Jarrell, and Scalapino, 2006b.
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Figure 1. Cartoon of order parameters under discussion in the Fe-pnictide
superconductors represented in the 2-dimensional, 1-Fe Brillouin zone. Different colors
stands for different signs of the gap.

aspects. This makes it more reasonable to look for those few commonalities which exist

and to assume, even without profound theoretical insight, that these commonalities are

important for high Tc. Some of these obviously include proximity to magnetism and

quantum criticality, or substantial anisotropy of the Fermi surface (quasi-2D) and it is

has already been argued by many that one should look for a combination of these factors

to search for novel superconductors [26].

1.2.4. Gap symmetry and structure. The group theoretical classification of gap

structures in unconventional superconductors is somewhat arcane and has been amply

reviewed elsewhere [27]. Here we present the simplest notions relevant to the discussion

of symmetry and structure of the order parameters under discussion in the Fe-based

superconductors at present. In the absence of spin-orbit coupling, the total spin of the

Cooper pair is well-defined and can be either S = 1 or S = 0. Experimental data appear

to rule out spin triplet states (see Section 4), so we focus on the spin singlet case. We

focus first on simple tetragonal point group symmetry. In a 3D tetragonal system, group

theory allows only for five one-dimensional irreducible representations: A1g (“s-wave”),

B1g (“d-wave” [x2 − y2]), B2g (“d-wave” [xy]), A2G (“g-wave” [xy(x2 − y2)]), and Eg

(“d-wave” [xz, yz]) according to how the order parameter transforms under rotations by

90
◦
and other operations of the tetragonal group. In Figure 1 we have illustrated two of

these symmetries, namely s-wave and dx2−y2-wave for the toy model. Note that the s++

  Attention: symétrie vs structure du gap !!!! 
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FIG. 1: Fermi sheets of the five-band model for n = 6.03
(top) and n = 5.95 (bottom) with colors indicating majority
orbital character (red=dxz, green=dyz, blue=dxy). Note the
γ Fermi surface sheet is a hole pocket which appears for ∼ 1%
hole doping.

isotropic “sign-changing s-wave” (s±) superconductor,
disorder can create subgap states39 under certain con-
ditions, depending on the ratio of inter- to intraband im-
purity scattering. There is no known scenario for produc-
ing ∆λ ∼ T with impurity scattering in a gapped state,
however. It is extremely important to establish whether
low-energy excitations are intrinsic (nodal) or extrinsic
(disorder-induced), and under what circumstances fully
developed gaps, as opposed to highly anisotropic gaps,
possibly with nodes, should be expected.

From the standpoint of fluctuation exchange theories

of pairing based on realistic Fermi surfaces in these mate-
rials, the most likely states indeed appear to be preferen-
tially of ”s-wave” symmetry, with quasi-isotropic gaps
on the hole pockets but highly anisotropic states on
the electron pockets3,4,40. All of these calculations in-
dicate the proximity of other pairing channels, partic-
ularly one with dx2−y2 symmetry, but transitions be-
tween an s-wave state and a d-wave state would give rise
to thermodynamic anomalies which have not yet been
convincingly observed. Attention has therefore focussed
primarily on the possibility of s-wave (A1g symmetry)
states with “accidental” nodes, i.e. nodes whose exis-
tence is due to details of the pairing interaction rather
than symmetry. When the leading instability was
of s-wave (A1g)type, 5-orbital calculations found
highly anisotropic states for all values of param-
eter space explored4, in apparent contradiction
to the existence of nearly isotropic states experi-
mentally observed in some materials.

What aspects of the physics of these materials are re-
sponsible for the nodes or near-nodes seen in these the-
ories? Some observations on this question have already
been made. Maier et al.41 pointed out that, within a
model with intra- and inter-orbital interactions, nodes
were driven by the intra-orbital Coulomb repulsion, the
scattering between the two β sheets neglected in simpler
2-band approaches, and a tendency (observed for the pa-
rameters considered in that work which were consistent
with local spin rotational invariance) of electrons in like
orbitals to pair. Kuroki et al.42 made an important con-
nection between the lattice structure, electronic struc-
ture, and pairing state of the Fe-based superconductors,
observing that in DFT calculations the pnictide atom
height above the Fe plane appeared to control the appear-
ance of a third γ Fermi surface sheet centered on the Γ
point in the folded zone corresponding to a (π,π) pocket
in the unfolded zone. This new hole-type pocket, not
considered in Ref. 4, stabilizes a more isotropic s± state.
When the γ pocket is present, intra-orbital q ∼ (π, 0)
and (0,π) scattering of dxy pairs between the γ and β
pockets favor a nodeless s± state.

Within a model with band interactions, Vildosola et

al.43 and Calderon et al.44 have also discussed the change
in the electronic structure caused by the shift of the pnic-
tide. In particular, the latter authors have noted that a
change in the angle α formed by the Fe-As bonds and the
Fe-plane can modify the orbital content as well as the
shape of the Fermi surface sheets. In a similar model,
Chubukov et al.45 deduced a phase diagram manifest-
ing a transition between a nodal and fully gapped state
with s symmetry as a function of a parameter control-
ling the relative importance of intraband repulsion, and
Thomale et al.46 reached similar conclusions within a 4-
band model, exploring the stability of the nodeless state
with respect to doping and other changes in electronic
structure. Wang et al.47 have also discussed the impor-
tant role played by the γ Fermi surface and emphasized
the role of the orbital matrix elements in determining

4

II. SPIN FLUCTUATION PAIRING

As in Ref. 4, we analyze the effective pair scattering
vertex Γ(k,k′) in the singlet channel,

Γij(k,k
′) =

∑

!1!2!3!4

a!2,∗νi (k)a!3,∗νi (−k) (2)

×Re [Γ!1!2!3!4(k,k
′,ω = 0)] a!1νj (k

′)a!4νj (−k′)

where the momenta k and k′ are restricted to the vari-
ous Fermi surface sheets with k ∈ Ci and k′ ∈ Cj . The
orbital vertex functions Γ!1!2!3!4 represent the particle-
particle scattering of electrons in orbitals "1, "4 into "2, "3
(see Fig. 2) and in the fluctuation exchange formula-
tion50,51 are given by

Γ!1!2!3!4(k,k
′,ω) =

[

3

2
ŪsχRPA

1 (k− k′,ω)Ūs+

1

2
Ūs −

1

2
Ū cχRPA

0 (k− k′,ω)Ū c +
1

2
Ū c

]

!1!2!3!4

,(3)

where each of the quantities Ūs, Ū c, χ1, etc. represent
matrices in orbital space as specified in the appendix.
Note that the χRPA

1 term describes the spin-fluctuation
contribution and the χRPA

0 term the orbital (charge)-
fluctuation contribution.
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FIG. 2: Top: pairing vertex Γ!1,!2,!3,!4 defined in terms of
orbital states !i of incoming and outgoing electrons. Bottom:
representative examples of classes of orbital vertices referred
to in the text: intra-, inter- and mixed orbital vertices.

For the parameter regions we will discuss, the domi-
nant contribution to the pairing comes from the S = 1
particle-hole exchange given by the first term in Eq. (3).
The forms of the interaction matrices Ūs and Ū c are
given in the appendix. As illustrated in Fig. 2 there are
intra-orbital, inter-orbital, and mixed-orbital pair scat-
tering processes. The contributions of each to the total
pair scattering vertex Γij in Eq. (3) are quite different.
In particular, as discussed below, the orbital matrix el-
ements for k and −k states on the Fermi surface favor

pairs which are formed from electrons in the same or-
bital state. We therefore find that, in spite of the fact
that the mixed-orbital scattering can be significant, its
contribution to the pairing interaction is negligible.
If one writes the superconducting gap ∆(k) as ∆g(k),

with g(k) a dimensionless function describing the mo-
mentum dependence of the gaps on the Fermi surfaces,
then g(k) is determined as the stationary solution of the
dimensionless pairing strength functional4

λ[g(k)] = −

∑

ij

∮

Ci

dk‖

vF (k)

∮

Cj

dk′
‖

vF (k′)g(k)Γij(k,k′)g(k′)

(2π)2
∑

i

∮

Ci

dk‖

vF (k) [g(k)]
2

(4)
with the largest coupling strength λ. Here the momenta
k and k′ are restricted to the various Fermi surfaces
k ∈ Ci and k′ ∈ Cj and vF,ν(k) = |∇kEν(k)| is the
Fermi velocity on a given Fermi surface. The eigenvalue λ
provides a dimensionless measure of the pairing strength.

III. SPIN ROTATIONAL INVARIANT CASE

Below we discuss the essential physics of the gapped-
nodal transition within the constrained interaction pa-
rameter subspace where spin rotational invariance is as-
sumed. It is worthwhile recalling the main points of the
argument for an isotropic s± state: 1) that a repulsive
effective interaction peaked near (π, 0) would drive such
a state provided 2) this interaction did not vary signifi-
cantly over the small Fermi surface pockets.14 Our main
points are as follows:

• The largest pair scattering processes tending to sta-
bilize an isotropic s± state are the intra-orbital
scattering pairing vertices Γaaaa (c.f. Fig. 2), which
are peaked near (π, 0).

• The intra-orbital processes primarily affect the gap
on the appropriate sections of the Fermi surface.
The relative signs between various orbital sections
are determined by subdominant intra- and inter-
orbital processes.

• The isotropic s± state can be frustrated by in-
traband Coulomb scattering and by pair scatter-
ing processes between the two electron sheets with
q ∼ (π,π), both of which favor nodes.41

• The γ pocket of dxy character can overcome this
frustration and stabilize the nodeless state.42

• If the Hund’s rule coupling J̄ is weak, the processes
induced by the γ pocket are not sufficient to elim-
inate the nodes. The Hund’s rule exchange is nec-
essary to overcome an attractive (π, 0) interaction
between dxz (dyz) pairs and dxy pairs and drive a
strong intra-orbital dxz and dyz repulsion.

FeAs: Surface de Fermi 

  Généralement appariement intra-orbital dominant 
 
  Anisotropie du gap due au contenu en orbital des feuillets de Fermi 

intraorbital interorbital mixte 



Appariement multi-orbital 

come from intraorbital (‘1 ¼ ‘2 ¼ ‘3 ¼ ‘4) scattering
processes with weaker contributions from the interorbital
processes (‘1 ¼ ‘4 ! ‘2 ¼ ‘3). The number, the shape, and
the location of the various Fermi surfaces also play a key role
in determining the strength of the pairing interaction and the
structure of the gap !ðkÞ.

As noted by Kuroki et al. (2009) for the 1111 Fe material,
depending upon the height of the pnictide and the doping, an
additional hole Fermi surface with dxy orbital character may

be present around the ð!;!Þ point of the unfolded Brillouin
zone. Figure 30 shows the Fermi surfaces at two different
fillings for a tight-binding parametrization of the 1111 Fe
material. In this case, for a filling hni ¼ 6:01, there are two
hole Fermi surfaces around the " point and two electron
Fermi surfaces around ð!; 0Þ and ð0;!Þ in the unfolded
1 Fe/cell Brillouin zone. However, for the hole-doped system
with hni ¼ 5:95, an additional hole Fermi surface appears
around the ð!;!Þ point. The dominant orbital weight along
the Fermi surfaces are also indicated along with various
intraorbital pair scattering processes. The left-hand panel
shows a pair scattering from the "1 hole Fermi surface around
the " point to a pair on the electron Fermi surface #1 centered
at ð!; 0Þ. Here electrons in states k and $k on the "1 Fermi
surface are scattered to states k0 and $k0 on the #1 Fermi
surface. This process is illustrated in Fig. 30 using an ex-
tended Brillouin zone in which $k0 is replaced by $k0 þ
ð2!; 0Þ. The orbital weight on both Fermi surfaces is

dominantly dyzð‘ ¼ 2Þ over the regions in which there is a
reasonable nesting giving rise to a peak in "2222 for a mo-
mentum transfer q& ð!; 0Þ. There are similar intraorbital dxz
scattering processes between "1 and the electron #2 Fermi
surface which give rise to a peak in "1111 for q& ð0;!Þ.
These processes lead to a "ijðk; k0Þ interaction which favors
an A1g s' gap which switches sign between the "1 and the
ð#1;#2Þ Fermi surface. However, as shown in the middle
panel of Fig. 30, there are interorbital dxz $ dxy pair scatter-
ing processes between #2 and #1. These act to frustrate a
uniform s' state. This same behavior is seen in the FRG
calculations (Zhai, Wang, and Lee, 2009; Thomale, Platt,
Hanke, and Bernevig, 2011). In addition, unless the Fermi-
surface areas weighted by v$1

F ðkÞ are such that the electron
and hole regions exactly balance, the short-range Coulomb
interaction can be reduced by an anisotropic A1g gap. As a
consequence, for a filling hni ¼ 6:01 and a typical set of
interaction parameters, one finds the A1g gap structure shown
on the left of Fig. 31 and as the dashed curve in Fig. 32. Here
the gap has nodes on the # electron Fermi surfaces. The
possibility of such accidental nodes in the A1g state is con-
sistent with the linear low temperature T dependence seen in
the penetration depth of LaFePO (Hicks et al., 2009).

The gap !ðkÞ for hni ¼ 6:01 and hni ¼ 5:95 is shown in
Fig. 31. For hni ¼ 6:01, the ð!;!Þ Fermi surface is absent
while for a doping hni ¼ 5:95, there is an additional hole
Fermi surface around the ð!;!Þ point of the 1 Fe/cell
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FIG. 30 (color online). For a filling n ¼ 6:01, the scattering of a pair from the "1 hole Fermi surface to the #1 electron Fermi surface shown
in the left-hand panel favors pairing in which there is a sign change of the gap between "1 and #1. A similar pair scattering process between
"1 and #2 leads to a gap which has the same sign on #1 and #2. However, the #2 $ #1 pair scattering shown in the middle panel tends to
frustrate this, since they favor a gap which has opposite signs on the #2 and #1 Fermi surfaces. As shown in the right-hand panel, for a filling
hni ¼ 5:95, an additional hole pocket $ appears and #2 $ $, as well as #1 $ $, pair scattering processes stabilize the s' gap.

FIG. 31 (color online). The gap eigenfunctions gðkÞ for a spin rotationally invariant parameter set #U ¼ 1:3, #U0 ¼ 0:9, #J ¼ #J0 ¼ 0:2, for
dopings n ¼ 6:01 (left) and n ¼ 5:95 (right). Here one sees how the s' gap is stabilized by the #1 $ $ and #2 $ $ pair scattering processes
shown in the right-hand panel of Fig. 30. From Kemper et al., 2010.
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come from intraorbital (‘1 ¼ ‘2 ¼ ‘3 ¼ ‘4) scattering
processes with weaker contributions from the interorbital
processes (‘1 ¼ ‘4 ! ‘2 ¼ ‘3). The number, the shape, and
the location of the various Fermi surfaces also play a key role
in determining the strength of the pairing interaction and the
structure of the gap !ðkÞ.

As noted by Kuroki et al. (2009) for the 1111 Fe material,
depending upon the height of the pnictide and the doping, an
additional hole Fermi surface with dxy orbital character may

be present around the ð!;!Þ point of the unfolded Brillouin
zone. Figure 30 shows the Fermi surfaces at two different
fillings for a tight-binding parametrization of the 1111 Fe
material. In this case, for a filling hni ¼ 6:01, there are two
hole Fermi surfaces around the " point and two electron
Fermi surfaces around ð!; 0Þ and ð0;!Þ in the unfolded
1 Fe/cell Brillouin zone. However, for the hole-doped system
with hni ¼ 5:95, an additional hole Fermi surface appears
around the ð!;!Þ point. The dominant orbital weight along
the Fermi surfaces are also indicated along with various
intraorbital pair scattering processes. The left-hand panel
shows a pair scattering from the "1 hole Fermi surface around
the " point to a pair on the electron Fermi surface #1 centered
at ð!; 0Þ. Here electrons in states k and $k on the "1 Fermi
surface are scattered to states k0 and $k0 on the #1 Fermi
surface. This process is illustrated in Fig. 30 using an ex-
tended Brillouin zone in which $k0 is replaced by $k0 þ
ð2!; 0Þ. The orbital weight on both Fermi surfaces is

dominantly dyzð‘ ¼ 2Þ over the regions in which there is a
reasonable nesting giving rise to a peak in "2222 for a mo-
mentum transfer q& ð!; 0Þ. There are similar intraorbital dxz
scattering processes between "1 and the electron #2 Fermi
surface which give rise to a peak in "1111 for q& ð0;!Þ.
These processes lead to a "ijðk; k0Þ interaction which favors
an A1g s' gap which switches sign between the "1 and the
ð#1;#2Þ Fermi surface. However, as shown in the middle
panel of Fig. 30, there are interorbital dxz $ dxy pair scatter-
ing processes between #2 and #1. These act to frustrate a
uniform s' state. This same behavior is seen in the FRG
calculations (Zhai, Wang, and Lee, 2009; Thomale, Platt,
Hanke, and Bernevig, 2011). In addition, unless the Fermi-
surface areas weighted by v$1

F ðkÞ are such that the electron
and hole regions exactly balance, the short-range Coulomb
interaction can be reduced by an anisotropic A1g gap. As a
consequence, for a filling hni ¼ 6:01 and a typical set of
interaction parameters, one finds the A1g gap structure shown
on the left of Fig. 31 and as the dashed curve in Fig. 32. Here
the gap has nodes on the # electron Fermi surfaces. The
possibility of such accidental nodes in the A1g state is con-
sistent with the linear low temperature T dependence seen in
the penetration depth of LaFePO (Hicks et al., 2009).

The gap !ðkÞ for hni ¼ 6:01 and hni ¼ 5:95 is shown in
Fig. 31. For hni ¼ 6:01, the ð!;!Þ Fermi surface is absent
while for a doping hni ¼ 5:95, there is an additional hole
Fermi surface around the ð!;!Þ point of the 1 Fe/cell

0

0

kx

k y

n 6.01

1 2 1

2

dxz dyz dxy

0

0

kx

k y

n 6.01

1 2 1

2

dxz dyz dxy

0

0

kx

k y

n 5.95

1 2 1

2

dxz dyz dxy

FIG. 30 (color online). For a filling n ¼ 6:01, the scattering of a pair from the "1 hole Fermi surface to the #1 electron Fermi surface shown
in the left-hand panel favors pairing in which there is a sign change of the gap between "1 and #1. A similar pair scattering process between
"1 and #2 leads to a gap which has the same sign on #1 and #2. However, the #2 $ #1 pair scattering shown in the middle panel tends to
frustrate this, since they favor a gap which has opposite signs on the #2 and #1 Fermi surfaces. As shown in the right-hand panel, for a filling
hni ¼ 5:95, an additional hole pocket $ appears and #2 $ $, as well as #1 $ $, pair scattering processes stabilize the s' gap.

FIG. 31 (color online). The gap eigenfunctions gðkÞ for a spin rotationally invariant parameter set #U ¼ 1:3, #U0 ¼ 0:9, #J ¼ #J0 ¼ 0:2, for
dopings n ¼ 6:01 (left) and n ¼ 5:95 (right). Here one sees how the s' gap is stabilized by the #1 $ $ and #2 $ $ pair scattering processes
shown in the right-hand panel of Fig. 30. From Kemper et al., 2010.
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  Généralités et Symétries 

  Mécanismes d’appariement électroniques 

  Sondes de la supraconductivité non-conventionnelle 

  Supraconductivité à proximité d’ordres électronique 



Sondes de la supra non-conventionnelle 

•  Triplet ou singulet: susceptibilité de spin sous Tc, effets de B 

• Symétrie du gap: anisotropie et phase 

• Détecter les fluctuations: la « colle » de l’appariement: 
phonons, fluctuations de spins… 

 
 
 

 Développement de nouvelles techniques depuis les années  
1990 (cuprates): ARPES, jonctions tunnels, STM, spectroscopies  
optiques….  



Sonder la symétrie du gap 
Sonder le gap permet de discriminer les différents scénario 
d’appariements: comment le sonder ? 
 
•  Présence de noeuds: quasiparticules de basses énergie 
profondeur de pénétration de London, chaleur specifique, conductivité thermique, 
spectroscopies optiques, RMN…. 

•  Dépendance angulaire du gap 
ARPES, Raman, chaleur specifique et conductivité thermique en fonction de la 
direction de B, conductivité thermique directionnelle …. 

•  Phase du gap 

Fil conducteur: gap d des cuprates 



Sonder l’anisotropie du gap 

Densité d’état  

The density of states is defined as

N(E) =
2
Ω ∑

!k

δ (E!k −E) . (123)

where we use the Bogolyubov quasiparticles spectrum

E!k =
√

ξ 2
!k

+ |∆!k |2 . (124)

We decompose the!k -integral into the (radial) energy ξ part and the angular part (average
over the Fermi surface):

N(E) = N0

∫ dΩ!k
4π

∫
dξ δ (

√
ξ 2 + |∆mg̃!k |2 −E)

= N0

∫ dΩ!k
4π

E√
E2 − |∆mg̃!k |2

= N0〈
E√

E2 − |∆mg̃!k |2
〉!k ,FS .

(125)

The density of states for an isotropic gap function g̃!k = 1 is straightforward :

N(E) = N0






0 |E| < ∆m

E√
E2 − |∆m|2

∆m ≤ |E|
(126)

No state can be found with energies below ∆m and a characteristic square-root singularity
signals the onset of continuous spectrum above ∆m. At higher energies the density of
states approaches the normal state value, so that the influence of superconductivity is
restricted to an energy range of several times the gap.

Turning to anisotropic gap functions we find an important change in the density of
states, since ”subgap” states appear. First we consider a gap with line nodes. As a simple
example we take ∆!k = ∆m cosθ which has a line node in the x-y-plane. We obtain

N(E) = N0
E

∆m

∫ +1

−1
dxRe

(
1√

(E/∆m)2 − x2

)
= N0

E
∆m






π
2

|E| < ∆m

arcsin
(

∆m

E

)
∆m ≤ |E|

(127)
Indeed a finite density of states is found below the maximal gap, down to zero energy.
However, the density of states vanishes in a characteristic way at E = 0, In the case of
line nodes it is a linear behavior. The singularity at E = ∆m is replaced by a cusp. The
anisotropy smoothens the singularity found for the isotropic gap.

The second class of node topology are the point nodes. As an example we consider
|∆!k | = ∆m sinθ which has z-axial symmetry with point nodes along z-direction. The
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FIGURE 8. Quasiparticle density of states N(E) for the isotropic gap, the gap with point nodes and line
nodes.

density of states has then the form

N(E) = N0
E

∆m

∫
dxRe

(
1√

x2 +((E/∆m)2 −1)

)
= N0

E
∆m

ln

∣∣∣∣∣
1+ E

∆m

1− E
∆m

∣∣∣∣∣ (128)

which also vanishes continuously when E → 0. but here with a quadratic behavior
N(E) ∝ E2, due the fact that fewer excitations with nearly zero-energy are accessible
than in the case of line nodes. At E = ∆m N(E) is logarithmically divergent.

We examine now the influence of the node topology on the low-temperture thermody-
namics using the example of the specific heat. The isotropic gap leads us to the result of a
conventional superconductor. We can safely assume that at very low temperature the gap
magnitude has saturated and does not change much anymore. Therefore the behavior of
the specific heat is dominated by the quasiparticle density of states.

C(T ) =
2
Ω ∑

!k

E!k
d f (E!k )

dT
=

∫
dE N(E) E

d f (E)
dT

=
∫

dE N(E)
E2

kBT 2
1

4cosh2(E/2kBT )

≈ N0

4kBT 2

∫ ∞

∆m
dE

E3
√

E2 −∆2
m

eE/kBT ≈ N0kB

(
∆m

kBT

)2 √
2πkBT ∆me−∆m/kBT .

(129)
This exponential behavior is typical of a gaped system (thermally activated), like in
a semiconductor. The gap sets a natural energy scale which can be derived from the
exponential behavior.
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density of states has then the form
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which also vanishes continuously when E → 0. but here with a quadratic behavior
N(E) ∝ E2, due the fact that fewer excitations with nearly zero-energy are accessible
than in the case of line nodes. At E = ∆m N(E) is logarithmically divergent.

We examine now the influence of the node topology on the low-temperture thermody-
namics using the example of the specific heat. The isotropic gap leads us to the result of a
conventional superconductor. We can safely assume that at very low temperature the gap
magnitude has saturated and does not change much anymore. Therefore the behavior of
the specific heat is dominated by the quasiparticle density of states.
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This exponential behavior is typical of a gaped system (thermally activated), like in
a semiconductor. The gap sets a natural energy scale which can be derived from the
exponential behavior.
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from single gap s-wave in Nb. A d-wave superconductor, Bi2Sr2CuO6+x, shows linear

temperature dependence.

Knowledge of the superconducting gap structure obtained from measured ∆λ(T ) at

the lowest temperatures can be extended to full superconducting T -domain by studying

superfluid density. Superfluid density can be calculated from the London penetration

depth by using a relation;

ρs(T ) =
λ2
ii(0)

λ2
ii(T )

(1.8)

For a conventional superconductor, the superfluid density at low temperatures can be

found by

ρs = 1−

�
2π∆(0)

kBT
exp

�
−∆(0)

kBT

�
(1.9)

For dx2−y2 pairing superconductors, the superfluid density at low temperatures is given

by

ρs = 1− 2 ln 2

∆(0)
T. (1.10)

As shown above, temperature dependence of the superfluid density at low temperatures

are the same as that of the London penetration depth. The theoretical superfluid density

for these two special cases are plotted for full superconducting temperature range in Fig.

1.9.
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du gap 

 
  Sensible à la surface 

surface de Fermi des cuprates (T>Tc)  

The density of states is defined as

N(E) =
2
Ω ∑

!k

δ (E!k −E) . (123)

where we use the Bogolyubov quasiparticles spectrum

E!k =
√

ξ 2
!k

+ |∆!k |2 . (124)

We decompose the!k -integral into the (radial) energy ξ part and the angular part (average
over the Fermi surface):

N(E) = N0

∫ dΩ!k
4π

∫
dξ δ (

√
ξ 2 + |∆mg̃!k |2 −E)

= N0

∫ dΩ!k
4π

E√
E2 − |∆mg̃!k |2

= N0〈
E√

E2 − |∆mg̃!k |2
〉!k ,FS .

(125)

The density of states for an isotropic gap function g̃!k = 1 is straightforward :

N(E) = N0






0 |E| < ∆m

E√
E2 − |∆m|2

∆m ≤ |E|
(126)

No state can be found with energies below ∆m and a characteristic square-root singularity
signals the onset of continuous spectrum above ∆m. At higher energies the density of
states approaches the normal state value, so that the influence of superconductivity is
restricted to an energy range of several times the gap.

Turning to anisotropic gap functions we find an important change in the density of
states, since ”subgap” states appear. First we consider a gap with line nodes. As a simple
example we take ∆!k = ∆m cosθ which has a line node in the x-y-plane. We obtain

N(E) = N0
E

∆m

∫ +1

−1
dxRe

(
1√

(E/∆m)2 − x2

)
= N0

E
∆m






π
2

|E| < ∆m

arcsin
(

∆m

E

)
∆m ≤ |E|

(127)
Indeed a finite density of states is found below the maximal gap, down to zero energy.
However, the density of states vanishes in a characteristic way at E = 0, In the case of
line nodes it is a linear behavior. The singularity at E = ∆m is replaced by a cusp. The
anisotropy smoothens the singularity found for the isotropic gap.

The second class of node topology are the point nodes. As an example we consider
|∆!k | = ∆m sinθ which has z-axial symmetry with point nodes along z-direction. The
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freedom are the SDW fluctuations. The role of the quantum-
critical point and the interplay between antiferromagnetism
and the resulting temperature, carrier concentration, and
magnetic field phase diagram were discussed by Sachdev
(2010). To summarize, the possible coexistence of antiferro-
magnetism and d-wave superconductivity, the change in the
exchange energy upon entering the superconducting phase,
and the importance of spin-fluctuation scattering are charac-
teristic of the class of materials being discussed.

D. A neutron spin resonance

Another important experimental observation linking these
materials is the appearance of a neutron scattering spin
resonance in the superconducting phase at the antiferromag-
netic or spin-density-wave vector Q. This resonance, first
observed in the cuprates (Rossat-Mignod et al., 1991;
Mook et al., 1993; Fong et al., 1995, 1999) and then
discovered in the heavy-fermion materials (Stock et al.,
2008), was also recently observed in various Fe superconduc-
tors (Christiansen et al., 2008; Inosov et al., 2010; Lumsden
and Christiansen, 2010; Park et al., 2011). The spin-flip
inelastic scattering rate is proportional to the imaginary
part of the spin susceptibility. Experimental results for
!00ðQ;!Þ obtained for CeCoIn5, Bi2Sr2CaCu2O8þ", and
BaFe1:85Co0:15As2 are shown in Figs. 11–13. While the
energy of the resonant peak in YBCO is relatively insensitive
to T=Tc, the peak in BaðFe0:975Co0:125Þ2As2 was found to
follow the temperature dependence of the superconducting
gap obtained from angle resolved photoemission spectros-
copy (ARPES) (Inosov et al., 2009; Terashima et al., 2009).

Although the detailed behavior of the resonance requires a
calculation of the spin susceptibility, the occurrence of the
resonance is directly related to the BCS coherence factor that

enters the neutron spin-flip scattering process. This coherence
factor for flipping the spin of a quasiparticle scattered from k
to kþQ is

1

2

!
1$ !ðkÞ!ðkþQÞ

EðkÞEðkþQÞ

"
; (3)

where EðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2k þ !2ðkÞ

q
is the quasiparticle energy. The

occurrence of a resonance requires that the gap changes sign
between regions on the Fermi surface or surfaces separated by
momentum Q which contribute significantly to the spin
scattering (Bulut, Scalapino, and Scalettar, 1992; Monthoux
and Scalapino, 1994a)

sgnð!ðkþQÞÞ ¼ $sgnð!ðkÞÞ: (4)

In this case the coherence factor Eq. (3) goes to 1 near
threshold while if there were a plus sign in Eq. (4), it would
vanish.

Equation (4) defines the class of unconventional super-
conductors which are the subject of this review.3 Materials in
this class have a gap that changes sign on different parts of the
Fermi surface or surfaces separated by a momentum Q which
connects regions which play an important role in the scatter-
ing of the electrons. Thus unconventional as used in this
review is not related to the symmetry of the gap, nor is it
determined by whether the gap has nodes or is nodeless. For
example, the gap may have A1g (s-wave) symmetry but

changes sign between two different pieces of the Fermi
surface, as the so-called s& gap proposed for the Fe-pnictides
(Mazin et al., 2008). As discussed in Sec. IV, such an A1g gap
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FIG. 11. The neutron scattering spin resonance in the normal
(dashed) and superconducting (solid) phases observed for the 115
Ce heavy-fermion material CeCoIn5 (Tc ¼ 2:3 K). From Stock
et al., 2008.

FIG. 12. Difference spectrum of the neutron scattering intensities
from Bi2Sr2CaCu2O8þ" (Tc ¼ 91 K) at T ¼ 10 and 100 K at wave
vector Q ¼ ð#=a;#=aÞ showing the spin resonance at '43 meV.
The horizontal bar represents the instrumental energy resolution and
the solid curve is a guide to the eye. From Fong et al., 1999.

3There have been proposals that the ‘‘resonance’’ structure in the
Fe-based superconductors is consistent with a conventional sþþ gap
driven by an electron-phonon pairing mechanism enhanced by
orbital fluctuations (Onari, Kontari, and Sato, 2010). In this case,
Eq. (5) would have a plus sign and the Fe-based superconductors
would not be ‘‘unconventional’’ according to the criterion that we
are using. It would, of course, be interesting to find such an orbitally
enhanced pairing mechanism.
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freedom are the SDW fluctuations. The role of the quantum-
critical point and the interplay between antiferromagnetism
and the resulting temperature, carrier concentration, and
magnetic field phase diagram were discussed by Sachdev
(2010). To summarize, the possible coexistence of antiferro-
magnetism and d-wave superconductivity, the change in the
exchange energy upon entering the superconducting phase,
and the importance of spin-fluctuation scattering are charac-
teristic of the class of materials being discussed.

D. A neutron spin resonance

Another important experimental observation linking these
materials is the appearance of a neutron scattering spin
resonance in the superconducting phase at the antiferromag-
netic or spin-density-wave vector Q. This resonance, first
observed in the cuprates (Rossat-Mignod et al., 1991;
Mook et al., 1993; Fong et al., 1995, 1999) and then
discovered in the heavy-fermion materials (Stock et al.,
2008), was also recently observed in various Fe superconduc-
tors (Christiansen et al., 2008; Inosov et al., 2010; Lumsden
and Christiansen, 2010; Park et al., 2011). The spin-flip
inelastic scattering rate is proportional to the imaginary
part of the spin susceptibility. Experimental results for
!00ðQ;!Þ obtained for CeCoIn5, Bi2Sr2CaCu2O8þ", and
BaFe1:85Co0:15As2 are shown in Figs. 11–13. While the
energy of the resonant peak in YBCO is relatively insensitive
to T=Tc, the peak in BaðFe0:975Co0:125Þ2As2 was found to
follow the temperature dependence of the superconducting
gap obtained from angle resolved photoemission spectros-
copy (ARPES) (Inosov et al., 2009; Terashima et al., 2009).

Although the detailed behavior of the resonance requires a
calculation of the spin susceptibility, the occurrence of the
resonance is directly related to the BCS coherence factor that

enters the neutron spin-flip scattering process. This coherence
factor for flipping the spin of a quasiparticle scattered from k
to kþQ is
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q
is the quasiparticle energy. The

occurrence of a resonance requires that the gap changes sign
between regions on the Fermi surface or surfaces separated by
momentum Q which contribute significantly to the spin
scattering (Bulut, Scalapino, and Scalettar, 1992; Monthoux
and Scalapino, 1994a)

sgnð!ðkþQÞÞ ¼ $sgnð!ðkÞÞ: (4)

In this case the coherence factor Eq. (3) goes to 1 near
threshold while if there were a plus sign in Eq. (4), it would
vanish.

Equation (4) defines the class of unconventional super-
conductors which are the subject of this review.3 Materials in
this class have a gap that changes sign on different parts of the
Fermi surface or surfaces separated by a momentum Q which
connects regions which play an important role in the scatter-
ing of the electrons. Thus unconventional as used in this
review is not related to the symmetry of the gap, nor is it
determined by whether the gap has nodes or is nodeless. For
example, the gap may have A1g (s-wave) symmetry but

changes sign between two different pieces of the Fermi
surface, as the so-called s& gap proposed for the Fe-pnictides
(Mazin et al., 2008). As discussed in Sec. IV, such an A1g gap
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FIG. 11. The neutron scattering spin resonance in the normal
(dashed) and superconducting (solid) phases observed for the 115
Ce heavy-fermion material CeCoIn5 (Tc ¼ 2:3 K). From Stock
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FIG. 12. Difference spectrum of the neutron scattering intensities
from Bi2Sr2CaCu2O8þ" (Tc ¼ 91 K) at T ¼ 10 and 100 K at wave
vector Q ¼ ð#=a;#=aÞ showing the spin resonance at '43 meV.
The horizontal bar represents the instrumental energy resolution and
the solid curve is a guide to the eye. From Fong et al., 1999.

3There have been proposals that the ‘‘resonance’’ structure in the
Fe-based superconductors is consistent with a conventional sþþ gap
driven by an electron-phonon pairing mechanism enhanced by
orbital fluctuations (Onari, Kontari, and Sato, 2010). In this case,
Eq. (5) would have a plus sign and the Fe-based superconductors
would not be ‘‘unconventional’’ according to the criterion that we
are using. It would, of course, be interesting to find such an orbitally
enhanced pairing mechanism.
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Rossat-Mignot,  
P. Bourges, Y. Sidis et al. 

Diffusion inélastique des neutrons 
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freedom are the SDW fluctuations. The role of the quantum-
critical point and the interplay between antiferromagnetism
and the resulting temperature, carrier concentration, and
magnetic field phase diagram were discussed by Sachdev
(2010). To summarize, the possible coexistence of antiferro-
magnetism and d-wave superconductivity, the change in the
exchange energy upon entering the superconducting phase,
and the importance of spin-fluctuation scattering are charac-
teristic of the class of materials being discussed.

D. A neutron spin resonance

Another important experimental observation linking these
materials is the appearance of a neutron scattering spin
resonance in the superconducting phase at the antiferromag-
netic or spin-density-wave vector Q. This resonance, first
observed in the cuprates (Rossat-Mignod et al., 1991;
Mook et al., 1993; Fong et al., 1995, 1999) and then
discovered in the heavy-fermion materials (Stock et al.,
2008), was also recently observed in various Fe superconduc-
tors (Christiansen et al., 2008; Inosov et al., 2010; Lumsden
and Christiansen, 2010; Park et al., 2011). The spin-flip
inelastic scattering rate is proportional to the imaginary
part of the spin susceptibility. Experimental results for
!00ðQ;!Þ obtained for CeCoIn5, Bi2Sr2CaCu2O8þ", and
BaFe1:85Co0:15As2 are shown in Figs. 11–13. While the
energy of the resonant peak in YBCO is relatively insensitive
to T=Tc, the peak in BaðFe0:975Co0:125Þ2As2 was found to
follow the temperature dependence of the superconducting
gap obtained from angle resolved photoemission spectros-
copy (ARPES) (Inosov et al., 2009; Terashima et al., 2009).

Although the detailed behavior of the resonance requires a
calculation of the spin susceptibility, the occurrence of the
resonance is directly related to the BCS coherence factor that

enters the neutron spin-flip scattering process. This coherence
factor for flipping the spin of a quasiparticle scattered from k
to kþQ is

1

2

!
1$ !ðkÞ!ðkþQÞ

EðkÞEðkþQÞ

"
; (3)

where EðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2k þ !2ðkÞ

q
is the quasiparticle energy. The

occurrence of a resonance requires that the gap changes sign
between regions on the Fermi surface or surfaces separated by
momentum Q which contribute significantly to the spin
scattering (Bulut, Scalapino, and Scalettar, 1992; Monthoux
and Scalapino, 1994a)

sgnð!ðkþQÞÞ ¼ $sgnð!ðkÞÞ: (4)

In this case the coherence factor Eq. (3) goes to 1 near
threshold while if there were a plus sign in Eq. (4), it would
vanish.

Equation (4) defines the class of unconventional super-
conductors which are the subject of this review.3 Materials in
this class have a gap that changes sign on different parts of the
Fermi surface or surfaces separated by a momentum Q which
connects regions which play an important role in the scatter-
ing of the electrons. Thus unconventional as used in this
review is not related to the symmetry of the gap, nor is it
determined by whether the gap has nodes or is nodeless. For
example, the gap may have A1g (s-wave) symmetry but

changes sign between two different pieces of the Fermi
surface, as the so-called s& gap proposed for the Fe-pnictides
(Mazin et al., 2008). As discussed in Sec. IV, such an A1g gap
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FIG. 11. The neutron scattering spin resonance in the normal
(dashed) and superconducting (solid) phases observed for the 115
Ce heavy-fermion material CeCoIn5 (Tc ¼ 2:3 K). From Stock
et al., 2008.

FIG. 12. Difference spectrum of the neutron scattering intensities
from Bi2Sr2CaCu2O8þ" (Tc ¼ 91 K) at T ¼ 10 and 100 K at wave
vector Q ¼ ð#=a;#=aÞ showing the spin resonance at '43 meV.
The horizontal bar represents the instrumental energy resolution and
the solid curve is a guide to the eye. From Fong et al., 1999.

3There have been proposals that the ‘‘resonance’’ structure in the
Fe-based superconductors is consistent with a conventional sþþ gap
driven by an electron-phonon pairing mechanism enhanced by
orbital fluctuations (Onari, Kontari, and Sato, 2010). In this case,
Eq. (5) would have a plus sign and the Fe-based superconductors
would not be ‘‘unconventional’’ according to the criterion that we
are using. It would, of course, be interesting to find such an orbitally
enhanced pairing mechanism.
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can also have nodes (Hirschfeld, Korshunov, and Mazin,
2011). Alternatively, one could have a B1g (d-wave) nodeless
gap on multiple Fermi surfaces.

III. MODELS

In this section we introduce the basic models that will be
discussed. While these are certainly minimal models, we
argue that they exhibit a number of the important physical
properties which are observed in the actual materials. On this
basis, it is reasonable to examine the structure of the pairing
interaction in these models as will be done in Sec. IV.

As illustrated in Fig. 5, these materials have crystal struc-
tures consisting of layers containing square planar arrays of
d- or f-electron cations embedded in an anion lattice. Here
we take a minimal approach which focuses on the d or f
electrons and treats the anion lattice as providing a crystalline
electric field and a hybridization network. This misses the
charge-transfer character (Zaanen, Sawatzky, and Allen,
1985) of the CuO2 planes, the dynamic polarization effects
of anions such as As, and the spd conduction bands of the
heavy-fermion and actinide anions. However, we believe that
this approach captures the essential physics that leads to
pairing in these materials.

This approach begins with the selection of local d or f
atomic states for the (Cu, Fe, Ce, Pu) ions which takes
account of the appropriate crystal-field and spin-orbit cou-
plings. Then these states are hybridized through the (O, As,
In, Ga) anion states, or directly, leading to a tight-binding
band or bands. The tight-binding hopping parameters are
typically adjusted so that the low-energy states fit the results
of band structure calculations. For the heavy-fermion and
actinide systems, one includes a further phenomenological
renormalization. Here one has the Kondo physics to deal with
and the approximation is based on the assumption that just as
in the single-ion case, the system renormalizes to a heavy
Fermi liquid. Then an on-site Coulomb interaction and, if
there are multiple orbitals, additional interorbital Coulomb
and exchange interactions are added. Even at this level there
are various parametrizations which involve the choice of
basis states for the band structure calculation, and the
Wannier projection of the bands in the vicinity of the Fermi

energy onto the local orbital basis (Gunnarsson et al., 1989;
Vildosola et al., 2008; Miyake et al., 2010).

Then, of course, when a model is selected, one needs to
determine its properties. There have been a number of differ-
ent theoretical approaches used to determine the properties of
Hubbard models. Analytic or semianalytic methods included
random phase approximations (RPA) (Miyake, Schmitt-Rink,
and Varma, 1986; Scalapino, Loh, Jr., and Hirsch, 1986;
Monthoux, Balatsky, and Pines, 1991; Graser et al., 2009),
renormalized mean-field theory (Anderson, 1987; Kotliar and
Liu, 1988a; Anderson et al., 2004), conserving fluctuation
exchange (FLEX) (Bickers, Scalapino, and White, 1989;
Dahm and Tewordt, 1995; Kuroki, Arita, and Aoki, 1999),
self-consistent renormalization (Moriya and Ueda, 2003),
two-particle-self-consistent (Tremblay, 2011), and slave-
boson approximations (Coleman, 1984; Ruckenstein,
Hirschfeld, and Appel, 1987; Kotliar and Liu, 1988b).
Numerical approaches include determinant quantum
Monte Carlo (DQMC) (Blankenbecker, Scalapino, and
Sugar, 1981; Hirsch, 1985; Paiva et al., 2001), variational
Monte Carlo (VMC) (Gros, 1988; Paramekanti, Randeria,
and Trivedi, 2004; Ogata and Fukuyama, 2008), a variety
of cluster Monte Carlo [cellular dynamic mean-field theory
(CDMFT) (Kotliar et al., 2001), dynamic cluster approx-
imation (DCA) (Jarrell et al., 2001), variational cluster-
perturbation theory (VCPT) (Potthoff, Aichhorn, and
Dahnken, 2003)] methods, density matrix renormalization
group (DMRG) (White, 1993) calculations as well as func-
tional renormalization group (FRG) (Halboth and Metzner,
2000; Honerkamp et al., 2001; Platt, Honerkamp, and Hanke,
2009; Zhai, Wang, and Lee, 2009) studies. Our goal in this
section is to introduce the Hubbard models that have been
used to describe the unconventional superconductors and
illustrate some of the results for their physical properties
which have been found from numerical calculations.

A. The cuprates

To illustrate the type of models that we have in mind, and
discuss some of their properties, we begin with the cuprates.
At the Cu site, the crystal-field splitting pushes the Cu dx2!y2

orbit up in energy so that it contains the last ð3dÞ9 electron
of Cu2þ. The undoped system with one hole per Cu is a

FIG. 13 (color online). (Left) The neutron scattering spin resonance for BaFe1:85Co0:15As2 (Tc ¼ 26 K). (Right) The energy of the
resonance vs temperature follows a BCS-like curve. From Inosov et al., 2010.
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FIGURE 20. Set up for a SQUID phase sensitive probe using a d-wave and a conventional s-wave
superconductor which has Josephson contact along two perpendicular faces [70, 67].

tion would be shifted by π . This property has been used to probe this symmetry feature
through an interference experiment.

We consider the configuration as given in Fig.20 where a conventional superconductor
is coupled to a dx2−y2-wave superconductor on two orthogonal faces. This is a typical
SQUID (Superconducting QUantum Interference Device) where the flux gives via an
Aharanov-Bohm-type effect for the Cooper pairs a periodic interference pattern of the
maximal current as a function of the magnetic flux threading the SQUID-loop. The total
current through this device consists of the contributions of the two junctions 1 and 2:

I = I1 + I2 = Ic1 sinϕ1 + Ic2 sin(ϕ2 +α) with ϕ1 −ϕ2 = 2π Φ
Φ0

(237)

with Φ0 = hc/2e is the superconducting magnetic flux quantum. The second term
involves a phase shift α which is π in the present situation. It is easy to calculate the
maximal current assuming Ic1 = Ic2 = Ic.

Imax(Φ) = Ic

∣∣∣∣cos
(

π Φ
Φ0

+
a
2

)∣∣∣∣ . (238)

While the standard SQUID (α = 0) shows a maximum for Φ = nΦ0, the configuration
with the d-wave superconductor (α = π) is shifted by half a flux quantum with a
maximum for Φ = (n/2 + 1)Φ0 (see Fig.21. This type of experiments have indeed
been performed in the specified configuration with YBa2Cu3O7 by several groups with
a positive result giving an even stronger support for the realization of dx2−y2-wave
symmetry in the cuprate superconductors [71, 72, 73, 67].

Another related experiment addresses the phase frustration effect in a superconducting
loop where a π-shift like this is buildt in. We assume that the superconducting loop does
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with Φ0 = hc/2e is the superconducting magnetic flux quantum. The second term
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While the standard SQUID (α = 0) shows a maximum for Φ = nΦ0, the configuration
with the d-wave superconductor (α = π) is shifted by half a flux quantum with a
maximum for Φ = (n/2 + 1)Φ0 (see Fig.21. This type of experiments have indeed
been performed in the specified configuration with YBa2Cu3O7 by several groups with
a positive result giving an even stronger support for the realization of dx2−y2-wave
symmetry in the cuprate superconductors [71, 72, 73, 67].

Another related experiment addresses the phase frustration effect in a superconducting
loop where a π-shift like this is buildt in. We assume that the superconducting loop does
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While the standard SQUID (α = 0) shows a maximum for Φ = nΦ0, the configuration
with the d-wave superconductor (α = π) is shifted by half a flux quantum with a
maximum for Φ = (n/2 + 1)Φ0 (see Fig.21. This type of experiments have indeed
been performed in the specified configuration with YBa2Cu3O7 by several groups with
a positive result giving an even stronger support for the realization of dx2−y2-wave
symmetry in the cuprate superconductors [71, 72, 73, 67].

Another related experiment addresses the phase frustration effect in a superconducting
loop where a π-shift like this is buildt in. We assume that the superconducting loop does
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FIGURE 21. Interference pattern of a SQUID: Standard pattern (upper panel); π-shifted pattern (lower
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not allow any flux to leak out so that enclosed flux is defined by the following condition

0 =
∮

d!s ·
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!∇φ − 2π
Φ0
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= 2πn+∑
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αi −2π Φ
Φ0

(239)

where the sum runs overall Josephson junction in the loop and αi denotes the phase shift
(0,π) (n: integer). Note that these phase shifts are not gauge independent. However,
the sum does not change under any gauge transformation in any of the superconducting
segments along the loop. One always finds ∑i αi = πn′, either with n′ an even or an odd
integer, i.e. ”even” and ”odd” is invariant under gauge transformation. This leads to the
following flux quantization:

Φ =






Φ0n even

Φ0

(
n+

1
2

)
odd

(240)

In case of an even number of π-shifts we have the standard flux quantization in terms of
an integer number of flux quanta. In contrast, for an odd number of π-shifts we encounter
a ”half-integer” flux quantization. A particular consequence of the latter case is that there
is no zero-flux situation. We call such a loop frustrated, since there is no situation in
which the phase is a constant throughout the loop. The SQUID loop in Fig.20 has an
odd number of π-shifts and would carry half-integer flux quanta.

Tsuei and co-workers created small loops of this kind by growing tiny YBa2Cu3O7-
loop (diameter ∼ 60 µm) on top of tricrystalline substrate [74]. In this way arrived at a
loop consisting of three differently oriented film segments. The geometry was chosen in
a way that the loop would be frustrated. Indeed the measurment of the magnetic flux in
the superconducting phase showed that there is a half-integer quantization in this loop,
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paramagnetic contribution to the total shielding has also
been observed in Nb Josephson-junction arrays, and
modeled using a conventional resistively shunted junc-
tion model (Barbara et al., 1999).

Sigrist and Rice (1997) argued that the paramagnetic
Meissner effects observed in conventional superconduct-
ors are qualitatively different from those in granular
BSCCO, both in terms of the size of the effect, which is
much larger in granular BSCCO, and in terms of its time
dependence, which is metastable in Al disks (Geim
et al., 1998) and Nb films (Terentiev et al., 1999), but not
in BSCCO granular samples. Scanning SQUID micro-
scope images of the magnetic-flux distribution in a
granular BSCCO sample exhibiting a large Wohlleben
effect showed a large polarization of the distribution of
the magnetic fluxes at zero externally applied field, indi-
cating that spontaneous magnetization, as opposed to
flux-focusing effects, are indeed responsible for the
paramagnetic signal (Kirtley, Mota, et al., 1998).

The origin of the paramagnetic Meissner effect in
granular BSCCO samples is now of reduced interest, at
least in terms of a test of the pairing symmetry of the
cuprate superconductors, since such tests are now rou-
tinely performed in controlled geometries. Nevertheless,
it appears that the debate over this very interesting ef-
fect will continue for some time.

IV. PHASE-SENSITIVE TESTS OF PAIRING SYMMETRY

A number of phase-sensitive experimental techniques
have been developed in recent years to determine the
symmetry of the pair state in cuprate superconductors
(for early reviews see Scalapino, 1995; Van Harlingen,

1995; Annett et al., 1996). A common feature of these
symmetry experiments is that instead of relying on the
quantitative magnitude of the Josephson current, they
seek a qualitative signature of unconventional super-
conductivity: sign changes in the Josephson critical
current Ic .

A. SQUID interferometry

Wollman et al. (1993) did the first phase-sensitive test
of pairing symmetry in a controlled geometry, based on
quantum interference effects in a YBCO-Pb dc SQUID.
In the ‘‘corner SQUID’’ geometry,14 Fig. 8(a), Joseph-
son weak links were made between Pb thin films and
two orthogonally oriented ac- (or bc-) plane faces of
single crystals of YBCO. If YBCO is a d-wave supercon-
ductor, there should be a ! phase shift between weak
links15 on adjacent faces of the crystal. Wollman et al.
(1993) tested for this phase shift by measuring the
SQUID critical current as a function of "a , the exter-
nally applied magnetic flux through the SQUID. The
critical current of the SQUID is the maximum of

Is!Ia sin #a"Ib sin #b , (39)

where Ia (Ib) and #a (#b) are the critical currents and
phases of the a (b) junctions, respectively. This maxi-
mum must be calculated subject to the constraint that
the phase be single valued [Eq. (33)]:

2!n!#a##b"$"2! ! IaLa

"0
#

IbLb

"0
"

"a

"0
" , (40)

where La and Lb are the effective self-inductances of
the two arms of the ring, and $!0 or ! for a zero ring or
a ! ring, respectively. This results in a roughly sinusoidal
dependence of Ic on "a . If the self-inductances are
small, or if the self-inductances and the junction critical
currents are symmetric, then Ic has a maximum at "a
!0 for a zero ring, but minimum at "a!0 for a ! ring.
In the experiments of Wollman et al. (1993), the junction
Ic’s and L’s were not necessarily balanced, leading to
shifts in the Ic vs "a characteristics. This effect was cor-
rected for by measurements at several values of the dc
applied current through the SQUID. This was possible
because of noise rounding of the current-voltage charac-
teristics of these SQUID’s. The phase shift was then
plotted as a function of dc current through the SQUID,

14This experimental geometry was suggested independently
by Sigrist and Rice (1992).

15The weak links of Wollman et al. (1993) were nominally of
the SNS type, since they had no intentional insulating
layer. However, their current densities were three orders
of magnitude smaller than, for example, typical
Pb-Cu-Pb superconducting-normal-superconducting junctions
(Clarke, 1966). They were therefore probably more like tunnel
contacts. Annett et al. (1996) have argued that it is plausible
that the pair transfer matrix Tk,l [Eq. (21)] is strongly peaked
in the forward direction for both SNS and tunneling weak
links, making the Sigrist-Rice clean relation [Eq. (26)]
applicable.

FIG. 8. Experimental geometry used for the experiments of
Wollman et al. (1993, 1995): (a) corner SQUID configuration;
(b) edge SQUID configuration; (c) corner junction; and (d)
edge junction.
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and then extrapolated to zero current to infer the intrin-
sic phase shift. These experiments were then repeated
with ‘‘edge SQUID’s,’’ Fig. 8(b), with two junctions on
the same ac (or bc) face of the crystal. Wollman et al.
(1993) found that the intercepts for the ‘‘corner
SQUID’s’’ varied from 0.3 to 0.6!0 , while those for the
‘‘edge SQUID’s’’ centered around zero [Fig. 9(a)].

The SQUID experiments of Wollman et al. (1993) had
a number of complicating factors in their interpretation.
First, there was the question of twinning effects. Since
YBCO has an orthorhombic crystal structure, it might
be expected that the lobe of the presumed dx2!y2 sym-
metry pairing function with one sign is associated with a
particular crystalline direction. Since YBCO crystals
normally grow heavily twinned, this would mean that
any face of the crystal not intersecting with the c axis
would have both a and b crystalline directions normal to
it, and therefore an admixture of positive and negative
phases. This would tend to randomize the phases that

these experiments depend on. The fact that these experi-
ments on highly twinned crystals, the IBM experiments
(Tsuei et al., 1994), and Maryland experiments (Mathai
et al., 1995) on highly twinned thin films, and experi-
ments on detwinned crystals (Brawner and Ott, 1994;
Van Harlingen, 1995), gave consistent results indicates
that the dx2!y2 component of the order parameter has
the same phase across twin boundaries.

Another issue was the linear extrapolation in dc cur-
rent used by Wollman et al. (1993). The validity of this
extrapolation has been called into question (Mathai
et al., 1995). Careful analysis of this problem (Hinaus
et al., 1996) shows that the linear extrapolation used by
Wollman et al. (1993) can be problematic if the asymme-
try of the SQUID depends on its critical current, and
that this problem can be overcome by exploiting the
time-reversal invariance of the SQUID equations. How-
ever, some of the SQUID’s in the experiments of Woll-
man et al. (1993) were apparently relatively symmetric
and could be measured at very low critical currents [e.g.,
the open diamonds in Fig. 9(a)], so that little correction
for self-field effects was required. These symmetric
SQUID’s gave results consistent, with little correction
from extrapolations, with those from the asymmetric
SQUID’s. In retrospect, this justifies the extrapolation
procedure.

Another objection that has been raised to these
SQUID experiments was that they compared SQUID’s
with corners with SQUID’s without corners [as in Figs.
8(a) and (b)]. It is well known that flux-trapping, demag-
netization, and field-focusing effects can be strongly de-
pendent on the sample geometry. Klemm (1994) pre-
sented arguments that the " phase shifts seen between
the ‘‘corner’’ and ‘‘edge’’ SQUID’s could result simply
from the differences in their geometries, even for s-wave
cuprate pairing symmetry. Wollman et al. (1994) argued
against this point of view on a theoretical basis. How-
ever, the strongest argument against corners being a de-
cisive influence comes from the results of Tsuei et al.
(1994), which showed the presence of the half-flux quan-
tum effect in a geometry with no corners.

Finally, the SQUID experiments of Wollman et al.
(1993) were influenced by the effects of flux trapping.
Note, for example, the results of Fig. 9(a). Here, the
‘‘edge’’ and ‘‘corner’’ SQUID’s on the same crystal were
cooled repeatedly, with significant differences in both
the slopes and the intercepts in the experimental results.
The simplest explanation for this is that there were vary-
ing amounts of trapped magnetic flux threading through
the SQUID area in different cooldowns. Wollman et al.
(1993) speculated that flux trapping could have occurred
in the Pb electrodes leading to the SQUID. Magnetic
imaging of the ac or bc plane faces of cuprate supercon-
ductors (Kirtley, Moler, et al., 1998; Moler et al., 1998)
shows that there can be vortices trapped between the
planes of the cuprate superconductors, often with oppo-
site senses, even when they are cooled in a very small
field. Such trapped vortices could affect the measured-
critical-current vs applied-field characteristics of the
SQUID’s. However, the fact that Wollman et al. (1993)

FIG. 9. Summary of the experimental results of Wollman et al.
(1993, 1995): (a) Extrapolation of the measured SQUID resis-
tance minimum vs flux to zero-bias current for a corner
SQUID and an edge SQUID on the same crystal. Each curve
represents a different cooldown of the sample; (b) Measured
critical current vs applied magnetic field for an ‘‘edge’’ junc-
tion and (c) for a ‘‘corner’’ junction.
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FIGURE 21. Interference pattern of a SQUID: Standard pattern (upper panel); π-shifted pattern (lower
panel).

not allow any flux to leak out so that enclosed flux is defined by the following condition
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where the sum runs overall Josephson junction in the loop and αi denotes the phase shift
(0,π) (n: integer). Note that these phase shifts are not gauge independent. However,
the sum does not change under any gauge transformation in any of the superconducting
segments along the loop. One always finds ∑i αi = πn′, either with n′ an even or an odd
integer, i.e. ”even” and ”odd” is invariant under gauge transformation. This leads to the
following flux quantization:
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In case of an even number of π-shifts we have the standard flux quantization in terms of
an integer number of flux quanta. In contrast, for an odd number of π-shifts we encounter
a ”half-integer” flux quantization. A particular consequence of the latter case is that there
is no zero-flux situation. We call such a loop frustrated, since there is no situation in
which the phase is a constant throughout the loop. The SQUID loop in Fig.20 has an
odd number of π-shifts and would carry half-integer flux quanta.

Tsuei and co-workers created small loops of this kind by growing tiny YBa2Cu3O7-
loop (diameter ∼ 60 µm) on top of tricrystalline substrate [74]. In this way arrived at a
loop consisting of three differently oriented film segments. The geometry was chosen in
a way that the loop would be frustrated. Indeed the measurment of the magnetic flux in
the superconducting phase showed that there is a half-integer quantization in this loop,
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FIGURE 23. Magnetic field distribution measured by a scanning SQUID microscope for four
YBa2Cu3O7 loops on a tricrystal substrate (white lines indicate the grain boundaries). Three loops have
no frustration (1,2 and 3) and the center loop 4 is frustrated. There is no magnetic flux in the loops 1, 2
and 3, but half a flux quantum (Φ0/2 in the loop 4 [74, 13].

while reference loops showed standard flux quantization. These experiments have been
repeated for other cuprate superconductors with the same result and are viewed as the
most beautiful phase sensitive test for d-wave pairing in these materials [13].

Other phase sensitive test based on scattering states

Interestingly potential scattering leads to an additional phenomenon which can be
used to obtain information about the phase structure of the pair wave function. Ordinary
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FIGURE 23. Magnetic field distribution measured by a scanning SQUID microscope for four
YBa2Cu3O7 loops on a tricrystal substrate (white lines indicate the grain boundaries). Three loops have
no frustration (1,2 and 3) and the center loop 4 is frustrated. There is no magnetic flux in the loops 1, 2
and 3, but half a flux quantum (Φ0/2 in the loop 4 [74, 13].

while reference loops showed standard flux quantization. These experiments have been
repeated for other cuprate superconductors with the same result and are viewed as the
most beautiful phase sensitive test for d-wave pairing in these materials [13].

Other phase sensitive test based on scattering states

Interestingly potential scattering leads to an additional phenomenon which can be
used to obtain information about the phase structure of the pair wave function. Ordinary

ent supercurrent densities, but the magnetic flux per unit
length in the ith branch of the vortex can be written as

d!"ri#
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, (46)

where in this case ri!0 for all grain boundaries at the
tricrystal point, and ri is restricted to values greater than
zero. Inside the superconductors, the London theory
gives '! 2B! !B! /&L

2 . Using London theory to describe the

FIG. 16. Three different SrTiO3 tricrystal geometries and scanning SQUID images of YBCO ring samples fabricated on these
substrates. The central, three-junction ring in (a) should be a $ ring for dx2"y2 pairing. It shows spontaneous generation of a half
integer flux quantum when cooled in zero field, while the surrounding, control rings show no trapped flux. The three-junction ring
in (b) should be a zero-ring for any pairing symmetry. The fact that it does not show spontaneous magnetization rules out a
symmetry-independent mechanism for the half-integer flux-quantum effect in these rings. The three-junction ring in (c) is designed
to be a zero-ring for dx2"y2 pairing symmetry, but a $ ring for extended s-wave pairing. This result rules out simple extended
s-wave pairing in YBCO [Color].

990 C. C. Tsuei and J. R. Kirtley: Pairing symmetry in cuprate superconductors

Rev. Mod. Phys., Vol. 72, No. 4, October 2000

  YBCO tri-cristal: Tsuei et al. (1994) 
Scanning SQUID microscope 
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X (V)=- dI dI
dV (3.40)

5X, (V)5a F(v)= fdV 5a F(v) [X (V)—X,(V)] .

(3.41)

The new spectral density is

a,F(v) =aoF(v)+5a F(v) . (3.42)

The procedure is continued until convergence is reached.
A unique a F(v) and p* result, and they are referred to
as the measured microscopic parameters for that particu-
lar material. Results obtained in this way for Pb are
shown in Fig. 14 (dotted curve).

5.5

(where the subscript m denotes "measured") to a F(v)
and p, (or p*, if you wish). The procedure followed is
simple. A first guess is made for the two quantities,
namely, aoF(v) and po. Equations (3.36) and (3.37) are
solved numerically to get b, (co) and from it an initial cal-
culated value of the density of quasiparticle states
N, (co)/X(0), which is given by (3.35). Here the subscript
c stands for "calculated" and the superscript 0 for a first
choice. In addition, the functional derivative
5X, (V)I5a F(v), which gives the infinitesimal response
of X, (V) to a change in a F(v), is computed. This is
used to make a second guess for a F(v) through the
equation

The inversion procedure just described requires data
only up to the voltage that corresponds to the maximum
phonon energy in a F(v) plus the zero-temperature gap
value. As a first test of the Eliashberg equations, one can
use the measured spectral density and the zero-
temperature equations, (3.36) and (3.37), to predict the
quasiparticle density of states at higher voltages in the
multiphonon region. When this is done and the theoreti-
cal results are compared with experiment, McMillan and
Rowell (1969) get, for the case of Pb, the excellent agree-
ment shown in Fig. 15. This remarkable figure consti-
tutes strong evidence for the validity of the Eliashberg
equations in the conventional superconductors. Many in-
versions have now been carried out for a variety of sys-
tems, including many A15 compounds. A tabulation of
earlier data is given by Rowell, McMillan, and Dynes
(1970).
It has turned out that not all data can be treated as

easily as that for Pb. In some cases it has proved very
dificult to produce good-quality junctions and often a
proximity layer will have formed between the supercon-
ductor and the oxide barrier. In this case the interpreta-
tion of data is more dificult, but Arnold and other
researchers [Wolf and Zasadzinski (1974); Arnold (1978);
Wolf et al. (1979); Arnold et al. (1978, 1980); Wolf and
Arnold (1982)] have devised a new inversion method in
which the proximity layer is explicitly accounted for by
introducing appropriate modifications of the underlying
mathematical equations. However, it is necessary to in-
troduce a fitting parameter, as the proximity layer is not
well characterized. This introduces some uncertainties in
the inversion procedure, which, although it is somewhat
less satisfactory, has, nevertheless, proved useful in many
cases.
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FIG. 14. Electron-phonon spectral density a F(cu) measured in
tunneling experiments (dotted curve) compared with that which
is calculated from first principles (solid curve).

FICx. 15. Predicted (solid curve) normalized density of states in
Pb as a function of energy co compared with measured values
(open dots) as a function of energy measured from the gap edge.
The measured density of states divided by the BCS density of
states above 11 meV was not used in the fitting procedure that
produced a I' (co), and a comparison of theory and experiment
in the multiple-phonon region is a valid test of the theory
[McMillan and Rowell (1969)].
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Rowell-McMillan (1964):  
inversion des spectres tunnel 
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terest to devise a procedure for "inverting"
the gap equation to obtain a phonon density of
states and coupling constants from the experi-
mental information on the electronic density
of states. We report below a procedure which
accomplishes this and obtain the strength of
the electron-phonon coupling, the screened
Coulomb interaction, and the phonon density
of states in lead.
The integral equations for the normal and

pairing self-energies of a dirty superconduc-
tor" are

OO

((m) = [I-Z((d)](u = d(u' Re
( „„)„,0

x G~ G (d F (d D 4' +(d
q q q q

D((u-'-(u)],
q

(dc
,2 &,aP&20

X d&d Q ((d )F((d )[D ((d' + (())
q q q q

+D (&u'-()))]-U
q c

where Dq((d) = ((u+ (dq f0+) '-, a((d) = y((u)/&(~),
and b, ,=b.(Ao). F(w) is the phonon density of
states

p(~)=Q f,a(~-w ),

and a'(&u) is an effective electron-phonon cou-
pling function for phonons of energy co,

a (~)E(~) fd'tf, ~, ,Q=g

x f)((u-&u, ) d'f),P-P"A.

where g~p, ~&' is the dressed electron-phonon
coupling constant, ~q~ is the phonon energy
for polarization x and wave number q (reduced
to the first zone), and vF is the Fermi velocity.
The two surface integrations are performed
over the Fermi surface.
In Eq. (2) the (d' integration has been cut off

at roc, and the Coulomb interaction has been
replaced by a Coulomb pseudopotential given
approximately» by

N(o)v
Uc [I+N(0)V In(E /&e )]'c F c

where P' is the static, screened Coulomb in-

(4)

5 10
I I f I I I

5
ENERGY (meV)

FIG. 1. Curve A is the normalized second deriv-
ative, (d/dV) j(dI/dV)~/(dI/dV)„] (in units meV )
for a Pb-I-Pb junction at 0.8'K as a function of V
—26p Curve B is the ratio of the (tunneling) elec-
tronic density of states of superconducting and
normal lead as a function of ~-b.p. Curve C is
u (u)+(cu) (which is dimensionless) versus ru. The
arrows indicate the singularities discussed in the
text.

teraction averaged over the Fermi surface,
and N(0) is the electronic density of states at
the Fermi surface unrenormalized by the elec-
tron-phonon interaction. Schrieffer, Scalapino,
and Wilkins have shown that the (tunneling) elec-
tronic density of states in the superconductor
is given by

N (u)) i~lS
N(0) [(d'-a'((u)]'" '=Be—

and is measured directly in the superconduc-
tor-normal-metal tunnel junction at zero tem-
perature. At finite temperature T«T, we
have

(df/d V) N (~)
(df/d V) N (0)n

where f' is the derivative of the Fermi function.
One measures directly the electronic density
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Comparaison avec calculs basés 
sur mesures neutrons 

W. L. McMillan et J.M. Rowell, Phys. Rev. Lett. 14, 108 (1964) 
J. Carbotte, Rev. Mod. Phys. 62, 1027 (1990)  
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  Idem avec couplage avec les fluctuations de spin ? Le cas des cuprates 
  Pb1: spectre des fluctuations de spin large en énergie (sauf résonance neutron) 
  Pb2: fort effet de feedback 
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FIG. 11 Phase diagram of CeRhIn5 versus pressure (115).
Note the coexistence region of antiferromagnetism and super-
conductivity.

FIG. 12 Phase diagram of UGe2 versus pressure (116). The
superconducting dome is completely inside the ferromagnetic
phase.

‘dome’ (Tc versus pressure) in UGe2 is enclosed entirely
within the ferromagnetic phase (Fig. 12). URhGe ex-
hibits an unusual ‘reentrant’ behavior where upon ap-
plying a magnetic field, superconductivity is suppressed,
then reappears at a higher field (118). Obviously, the
pair state in these materials is thought to be a ‘triplet’,
but little is known about its properties (119).

We now turn to microscopics. Heavy fermion behav-
ior typically occurs near the borderline between local-
ized and itinerant behavior for the f electrons, the so-
called Hill limit (120). Rare earth impurities in transi-
tion metals are well known to exhibit the Kondo effect,
where scattering of the conduction electrons off the f
ions leads to a logarithmic divergence of the resistivity
as the temperature is lowered (121). This is a good ex-

ample of where perturbation theory breaks down in an
unusual way (it is third order in the interaction before the
log shows up). The Kondo problem was first solved by
Ken Wilson in 1975 using the numerical renormalization
group (122), where below the so-called Kondo tempera-
ture, the conduction electrons bind to the f electrons to
form singlets, reminiscent of BCS theory. This can pre-
sumably be extended to a dense array of such local ions,
forming a ‘Kondo lattice’. Realistic treatments of the
problem are based on the Anderson model (123), which
allows the f occupation to be non-integer and thus ac-
counts for f charge fluctuations - the Kondo limit be-
ing the limit that the f occupation goes to an integer
value (i.e., the Coulomb repulsion U goes to infinity),
and thus only f spin fluctuations remain. The solution
of this problem can be seen as a local f level which inter-
acts with the conduction band, forming two ‘hybridized’
bands (this is a correlated analogue of band theory). If
the chemical potential falls inside the gap (integer occu-
pation of f and conduction), one has a ‘Kondo insulator’
(currently the rage because it is a potential topological
insulator with conducting surface states (124; 125)). If
just outside the gap, one has a very heavy mass.

One can go beyond this mean field treatment by the
use of slave bosons with a gauge field that incorporates
the constraint of near integer occupation of the f elec-
tron (with the scalar part of the gauge field related to the
f charge, and the vector part related to the f current)
(126). In this case, a perturbation expansion is possible
in 1/N , where N is the degeneracy of the f orbitals. N
is six for the j=5/2 orbitals appropriate for cerium, but
obviously in the low energy limit, N typically reduces to
2 because of crystal field splitting of the f levels. The
principal fluctuations beyond mean field theory are hy-
bridization fluctuations. By considering the anomalous
self-energy, these ‘Kondo bosons’ can intermediate higher
angular momentum pairing (127). One disadvantage of
this approach is that spin fluctuations do not show up
until order 1/N2 (128). This can be cured by going to a
spin rotationally invariant formalism.

Since these early days, many theories for heavy fermion
superconductivity have been proposed, ranging from
the paramagnon and ‘Kondo boson’ approaches men-
tioned above, to phonons and valence fluctuations. That
phonons could play some role is evident from the very
large Gruneisen parameters observed in heavy fermion
metals. That valence fluctuations can play some role is
evident from the phase diagram of CeCu2Si2 (Fig. 13).
The pressure dependence of Tc is complicated, but upon
doping with germanium (which suppresses Tc), it was
seen that the superconducting ‘dome’ was actually com-
posed of two domes (129). The first (smaller) one is asso-
ciated with a quantum critical point where magnetic or-
der disappears similar to CeIn3, but the second (larger)
one appears to be associated with a valence change of the
f electrons.

Reviewing the full breadth of these theories would take
its own review article. Suffice it to say that as of yet,
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FIG. 11 Phase diagram of CeRhIn5 versus pressure (115).
Note the coexistence region of antiferromagnetism and super-
conductivity.

FIG. 12 Phase diagram of UGe2 versus pressure (116). The
superconducting dome is completely inside the ferromagnetic
phase.

‘dome’ (Tc versus pressure) in UGe2 is enclosed entirely
within the ferromagnetic phase (Fig. 12). URhGe ex-
hibits an unusual ‘reentrant’ behavior where upon ap-
plying a magnetic field, superconductivity is suppressed,
then reappears at a higher field (118). Obviously, the
pair state in these materials is thought to be a ‘triplet’,
but little is known about its properties (119).

We now turn to microscopics. Heavy fermion behav-
ior typically occurs near the borderline between local-
ized and itinerant behavior for the f electrons, the so-
called Hill limit (120). Rare earth impurities in transi-
tion metals are well known to exhibit the Kondo effect,
where scattering of the conduction electrons off the f
ions leads to a logarithmic divergence of the resistivity
as the temperature is lowered (121). This is a good ex-

ample of where perturbation theory breaks down in an
unusual way (it is third order in the interaction before the
log shows up). The Kondo problem was first solved by
Ken Wilson in 1975 using the numerical renormalization
group (122), where below the so-called Kondo tempera-
ture, the conduction electrons bind to the f electrons to
form singlets, reminiscent of BCS theory. This can pre-
sumably be extended to a dense array of such local ions,
forming a ‘Kondo lattice’. Realistic treatments of the
problem are based on the Anderson model (123), which
allows the f occupation to be non-integer and thus ac-
counts for f charge fluctuations - the Kondo limit be-
ing the limit that the f occupation goes to an integer
value (i.e., the Coulomb repulsion U goes to infinity),
and thus only f spin fluctuations remain. The solution
of this problem can be seen as a local f level which inter-
acts with the conduction band, forming two ‘hybridized’
bands (this is a correlated analogue of band theory). If
the chemical potential falls inside the gap (integer occu-
pation of f and conduction), one has a ‘Kondo insulator’
(currently the rage because it is a potential topological
insulator with conducting surface states (124; 125)). If
just outside the gap, one has a very heavy mass.

One can go beyond this mean field treatment by the
use of slave bosons with a gauge field that incorporates
the constraint of near integer occupation of the f elec-
tron (with the scalar part of the gauge field related to the
f charge, and the vector part related to the f current)
(126). In this case, a perturbation expansion is possible
in 1/N , where N is the degeneracy of the f orbitals. N
is six for the j=5/2 orbitals appropriate for cerium, but
obviously in the low energy limit, N typically reduces to
2 because of crystal field splitting of the f levels. The
principal fluctuations beyond mean field theory are hy-
bridization fluctuations. By considering the anomalous
self-energy, these ‘Kondo bosons’ can intermediate higher
angular momentum pairing (127). One disadvantage of
this approach is that spin fluctuations do not show up
until order 1/N2 (128). This can be cured by going to a
spin rotationally invariant formalism.

Since these early days, many theories for heavy fermion
superconductivity have been proposed, ranging from
the paramagnon and ‘Kondo boson’ approaches men-
tioned above, to phonons and valence fluctuations. That
phonons could play some role is evident from the very
large Gruneisen parameters observed in heavy fermion
metals. That valence fluctuations can play some role is
evident from the phase diagram of CeCu2Si2 (Fig. 13).
The pressure dependence of Tc is complicated, but upon
doping with germanium (which suppresses Tc), it was
seen that the superconducting ‘dome’ was actually com-
posed of two domes (129). The first (smaller) one is asso-
ciated with a quantum critical point where magnetic or-
der disappears similar to CeIn3, but the second (larger)
one appears to be associated with a valence change of the
f electrons.

Reviewing the full breadth of these theories would take
its own review article. Suffice it to say that as of yet,
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while the FM fluctuation contributes ∼ 50mJ/K2mol to
the total γ-value (160mJ/K2mol).45) Finally at low tem-
peratures the relatively enhanced γ-value 160mJ/K2mol
is achieved. Contrary to UGe2, with increasing pressure,
TCurie increases monotonously at least up to 12GPa, as
shown in Fig. 8, indicating the system is pushed far from
the FM instability.46, 47) Correspondingly the positive
∂TCurie/∂P is obtained from the Ehrenfest relation.48)

The decrease of Tsc with pressure is associated with the
decrease of m∗∗, which also implies that the system is
getting away from the FM instability.
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Fig. 8. (Color online) Pressure dependence of TCurie and Tsc in
URhGe.46, 47)

The new feature is that the slope of magnetization
curve ∂M/∂H for the field along the hard magnetization
axis (b-axis) is larger than that along the easy axis (c-
axis), leading to the spin reorientation at HR ∼ 12T for
H ‖ b-axis, as shown in Fig. 9. The magnetization curve
for H ‖ b-axis displays that the extrapolation of M(H)
from H > HR to H = 0 gives a finite value, (∼ 0.15µB).
This confirms that the system remains in FM side with
the decrease of M0 from 0.5µB to 0.15µB, as if the field
sweep along b-axis leads to approach the FM instability.

This spin reorientation gives rise to the field reentrant
SC (RSC) around HR at low temperatures.49) Figure 10
shows the temperature-field phase diagram forH ‖ b-axis
in URhGe.50) Applying field, SC is suppressed around
2T, further increasing field, RSC appears approximately
between 11T and 14T. Interestingly the maximum of
Tsc for RSC phase (≈ 0.42K) is higher than Tsc for low
field SC phase (≈ 0.26K). At high temperatures, TCurie

decreases with increasing fields as it is phenomenologi-
cally described by means of Landau free energy.51) The
reduced TCurie is connected to the spin reorientation field
HR at low temperatures. The RSC as well as low field
SC are very sensitive to the sample quality, indicating
that both SCs are unconventional.50) When the field is
slightly tilted to the magnetization easy-axis (c-axis), the
RSC phase immediately shifts to higher fields and col-
lapses.52, 53) This is attributed to the rapid suppression
of longitudinal magnetic fluctuation by tilting field. On
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Fig. 9. (Color online) Magnetization curves and field derivative
of magnetization in URhGe.45)

the other hand, RSC is very robust when the field is tilted
from b to a-axis, i.e. maintaining the hard-magnetization
axis. HR increases as a function of 1/ cosθ, where θ is
the field angle from b to a-axis. Accompanying with the
increase of HR, RSC is sustained even above 28T.52)
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Fig. 10. (Color online) Temperature-field phase diagram for H ‖
b-axis in URhGe. SC, RSC and FM denote superconductivity,
reentrant superconductivity and ferromagnetism, respectively.
The inset shows the field dependence of resistivity at low tem-
peratures (≈ 80mK).50) It is noted that the field range of RSC
is very sensitive against the small mis-orientation to c-axis.
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FIG. 24 Phase diagram of κ-(ET)2Cu2(CN)3 versus pres-

sure (242). A superconducting phase abuts a Mott insulating

phase with no long range magnetic order.

reminiscent of that seen in underdoped cuprates, with a
pseudogap effect apparent in NMR data (241) along with
an enhanced Nernst signal above Tc (247).

Little is known about the gap structure of the organ-
ics. The NMR relaxation rate varies as T3 suggestive of
nodes (as in the cuprates), though it should be remarked
that this T3 behavior seems ubiquitous in many mate-
rials regardless of their nodal structure. Recently, there
has been some success with photoemission in this class
of compounds (248), so it is hoped in the near future
that more definitive evidence of the nature of the su-
perconducting state will be forthcoming. Certainly, the
available evidence points to a strongly correlated state,
where Mott physics (249) and magnetic correlations play
a fundamental role, implying these materials are close
cousins of the cuprates.

Besides these materials, a variety of other organic com-
pounds have been discovered which are superconduct-
ing. Of particular interest are buckeyballs (C60), which
when doped with alkali atoms exhibit superconductivity
up to 40 K (250). For a long time, these were regarded
as strong-coupling conventional superconductors, but re-
cent work on the 40 K cesium variety (251) indicates
a phase diagram again reminiscent of the cuprates and
ET salts, where superconductivity emerges under pres-
sure from an antiferromagnetic insulating phase (Fig. 25).
Even more recently, high temperature superconductivity
has been reported in materials based on chains of ben-
zene rings with superconductivity up to 33 K (252; 253).
More work will be necessary in order to understand the
relation of these materials to the organic salts described
above.

FIG. 25 Phase diagram of Cs3C60 versus pressure (251). Note

the presence of an antiferromagnetic insulating phase as in the

cuprates.

FIG. 26 LaOFeAs (left (259)) and CaFe2As2 (right (260))

crystal structures, denoted as 1111 and 122 respectively. Yel-

low are iron atoms, purple are arsenic ones. On the left, a

flourine dopant is shown in green. On the right, the spin

directions (red arrows) are shown for the magnetic phase.

VI. PNICTIDES

In early 2008, Hosono’s group announced the discov-
ery of high temperature superconductivity in an iron ar-
senide compound (254), following earlier work by this
group that had found lower temperature superconduc-
tivity in the phosphide variant. Superconductivity was
soon seen up to 56 K (255). Several known crystal struc-
ture classes have now been identified (Fig. 26), the most
studied being the so-called 122 structure (256) which has
the same ThCr2Si2 structure as several heavy fermion
superconductors. The materials are composed of square
lattices of iron atoms each tetrahedrally coordinated to
arsenic ones, though the simpler ‘11’ class of materials are
actually iron chalcogenides. FeSe has a relatively lower
Tc of 10K (257), though an intercalated version has a Tc

above 40K (258).
Like the cuprates, the undoped variant of the arsenides

Organique 2D 

  Pas d’ordre magnétique 
 
  Transition métal-isolant 
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1987, quasi-simultanément par des mesures de susceptibilité magnétique (Johnston
1987), de rotation du spin des muons (µ − SR, Uemura (1987)), et de diffraction de
neutrons (Vaknin 1987), que l’état fondamental des cuprates à dopage nul est un isolant
antiferromagnétique (voir la figure 1.8-C). Il s’agit de ce que l’on appelle un isolant de
Mott10 (par opposition à un isolant de bande), conséquence directe de la compétition
entre la largeur de bande de conduction, déterminée par les paramètres de transferts
d’un site atomique à l’autre, et la forte interaction coulombienne sur site Cu, renforcée
par la localisation des orbitales 3d.

Cu

O

Fig. 1.8: A gauche : Représentation de la maille élémentaire (doublée par rapport à la

maille cristallographique) dans la phase antiferromagnétique dans les cuprates à dopage

nul. A droite : mesures par diffusion inélastique des neutrons de la dispersion (A) et

de la dépendance avec le moment de l’intensité (B) d’une onde de spin dans le cuprate

LaCu2O4 (Coldea 2001). Cette excitation élémentaire centrée au vecteur d’onde �QAF

(noté (1/2, 1/2) ici) est caractéristique du doublement de la maille élémentaire résultant

de l’ordre antiferromagnétique.

A dopage nul, c’est l’interaction coulombienne qui domine, et défavorise fortement
le déplacement des électrons qui se retrouvent ainsi localisés sur les sites Cu. Ils sont
de plus couplés entre eux via des mécanismes de super-échange (Anderson 1959) favo-
risant la mise en place d’un ordre antiferromagnétique qui possède des températures
de Néel TN de l’ordre de quelques centaines de Kelvin. Les premières estimations de
la constante J de couplage antiferromagnétique entre les spins ont été obtenues par

10Il s’agit en réalité d’un isolant de Mott à transfert de charge. Nous détaillerons ce point à la
section 1.3.1
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FIG. 23 Combined electron and hole doped phase diagram
of the cuprates (199). Note that the antiferromagnetic phase
extends over a larger doping range in the electron doped case.

that strong spin fluctuations are still present at optimal
doping.

The various theories discussed above have led to a pas-
sionate debate on the nature of the pairing in cuprates.
In antiferromagnetic spin fluctuation theories, pairing
is treated in an approximation similar to the electron-
phonon case - that is, by virtual exchange of spin fluc-
tuations (58; 59; 60; 61). The pairing interaction is pro-
portional to the dynamic spin susceptibility, and thus the
source of pairing is an induced interaction that is confined
to energies of order 0.4 eV or less. This is in contrast to
RVB theories, where the pairing is encoded in the ‘nor-
mal state’ wavefunction, and the interaction is associated
with the superexchange J which should only develop dy-
namics on an energy scale of order U (203). Dynami-
cal mean field theory calculations in the cluster approx-
imation are in support of the former picture (204) even
though such calculations do exhibit RVB like behavior,
with singlet formation particularly pronounced for four
site copper plaquettes (205). Certainly, changes in the
optical response of cuprates below Tc have been observed
up to 5 eV (206) indicating that the effects of pairing ex-
tend over a large energy range. This may be related to
other optics experiments (207) that indicate a lowering
of the kinetic energy below Tc in underdoped materials,
where the resulting increase in low energy spectral weight
would come at the expense of high energy spectral weight
(coming from an energy scale of U). This is very differ-
ent from the increase of the kinetic energy that occurs in
BCS theory due to particle-hole mixing. In essence, the
potential energy decreases when the energy gap is formed
in the pseudogap phase, but the electrons remain inco-
herent. Only below Tc does coherence occur, leading to
a decrease in the kinetic energy. This has been suggested
to be in support of pre-formed pairs in the pseudogap
phase (as also implied by the large Nernst signal in the
pseudogap phase (208)), but kinetic energy lowering has

been seen as well in dynamical mean field calculations
where the existence of pairing above Tc has not been
identified (209).

Given the diverse nature of the phenomena in cuprates,
it has been difficult to come up with a ‘smoking gun’ for
pairing. Attempts to extract the anomalous self-energy
from planar tunneling, ARPES, and scanning tunneling
probes have been inconclusive up to now, mainly because
of the strong momentum dependence associated with d-
wave pairing, along with the complications of a normal
state pseudogap, though looking at the angle resolved
density of states instead can help (210). Attempts to an-
alyze the ‘normal state’ self-energy indicate the presence
of spin fluctuations (211; 212), phonons (213), and a fre-
quency independent bosonic background similar to what
is seen in Raman scattering (214; 215). Much focus has
been put on the ‘spin’ resonance below Tc, which was first
identified in cuprates (216) before being seen in several
heavy fermion superconductors (and later in pnictides).
Although this could simply be consistent with having d-
wave pairing (the d-wave state reverses sign under trans-
lation by Q = (π,π)), neutron scattering does indicate
that the formation of the resonance is associated with a
lowering of the overall exchange energy below Tc (217),
though it should be remarked that because of phonon
contamination in the data, uniquely extracting the spin
fluctuations over a large range of energy and momentum
is difficult. Certainly, phonons have been argued to play
a large role in the normal state self-energy (213), partic-
ularly at low dopings where polaronic effects are evident
(218), but it is a stretch to believe that phonons are re-
sponsible for d-wave pairing at the high temperatures
observed in the cuprates, though some have advocated
this (219).

What should be remembered is that ARPES for over-
doped materials (where the complications of a pseudo-
gap are not present) is consistent with an energy gap of
the functional form cos(kxa)− cos(kya) (141; 220). This
implies pairing originating from near neighbor copper in-
teractions (since this function is the Fourier transform
of such). It is doubtful whether phonons would give rise
to this particular functional form - or intra-unit cell or-
bital currents for that matter, where the pairing vertex
is of the form (k × k�)2 (221). Spin fluctuations can, as
well as RVB theories. It has been argued that these lat-
ter two approaches represent opposite limits of a more
general theory (222), but Anderson has argued against
this (223). Certainly, there is a difference between local
singlets (RVB) as opposed to longer range antiferromag-
netic spin fluctuations. Regardless, the real worry is that
as in 3He, everything and the kitchen sink might be con-
tributing to the pairing.

Ultimately, it may take unbiased numerical approaches
to settle these matters. Quantum Monte Carlo (QMC)
simulations of fermionic systems suffer from the sign
problem where negative probabilities occur, meaning
that one is limited in how low in temperature one can
do reliable calculations. QMC simulations of the single
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(2005), McElroy (2006), Chatterjee (2006) pour Bi-2212 ou Hanaguri (2004) et Shen
(2005)) pour Ca2−xNaxCuO2Cl2).

1.2.3.3 Surdopage des cuprates : vers un bon métal ?

p

!~T

!~T2

Fig. 1.19: En haut, à gauche : évolution de la résistivité avec le dopage dans le composé
Tl-2201, du dopage optimal (A, Tc = 85 K) ou elle est linéaire avec la température, au fort
surdopage (E, plus supraconducteur) ou elle tend à devenir quadratique, conformément
aux attentes pour un liquide de Fermi (Kubo 1991). En bas, à gauche : le Knight shift
mesuré par RMN de 17O, proportionnel à la partie réele susceptibilité magnétique uni-
forme χ�(�q = 0,ω) est pratiquement indépendant de la température dans les échantillons
surdopés Y-123 (Tc = 90 K) et Tl-2201 (Tc = 10 K) : c’est une susceptibilité de type Pauli,
attendue pour un systèmes d’électrons ou quasiparticules indépendantes (Bobroff 2005).
A droite : Evolution de l’intensité du photocourant en fonction de l’énergie du photo-
électron, dans la partie surdopée du diagramme de phase. Les courbes obtenues dans
l’état normal montrent clairement un pic de cohérence de quasiparticules qui se renforce
avec le surdopage (Kaminski 2000).
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  Résistivité linéaire en T et quasiparticules mal définies 

  Approche couplage faible de l’appariement supra. 
supposent un liquide de Fermi…. 
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Les mesures de conductivité thermique qui montraient un faible écart à la loi de

Wiedemann-Franz pour les cuprates optimalement dopés, voient cet écart augmenter

violement dans la partie sous-dopée du diagramme de phase (Proust 2005) (figure 1.16),

du fait d’un excès de conductivité thermique par rapport à la conductivité électrique.

Ceci peut aussi bien être une conséquence de l’effet des interactions électrons-électrons

qui augmentent à l’approche de la phase isolante et renormalisent différement les deux

types de conductivité, que de la présence inhomogénéïtés (Bel 2004). Si ces mesures ne

permettent pas de déterminer une température d’ouverture du pseudogap, elles mettent

clairement en évidence les fortes déviations au liquide de Fermi dans cette phase.

Spectroscopie tunnel Les mesures spectroscopiques d’effet tunnel (réalisées soit à

l’aide avec un microscope à effet tunnel (STM) ou de jonctions planaires) permettent

de mesurer la densité d’états. Les mesures STM à haute température sont à chaque

fois un tour de force expérimental, et relativement peu de résultats existent.

Fig. 1.17: Panneau gauche : évolution des spectres de conductance tunnel dans Bi-

2212 sous-dopé. On voit se former une déplétion au niveau de Fermi, caractéristique de

l’ouverture d’un gap, bien au dessus de Tc (Renner 1998). Panneau droit : A) spectre de

conductance tunnel à 100 K dans Bi-2212, B) image topologique de la surface du Bi-2212

à 100 K montrant la superstructure du réseau, C) à F) cartes de conductances obtenues

à différents bias : on voit apparaître une modulation de la densité électronique le long

des axes CuO (Vershinin 2004).

Les mesures de Renner (1998) ont permis de montrer l’existence d’une déplétion

dans la densité d’états au niveau de Fermi survenant bien au dessus de Tc dans un

échantillon sous-dopé (panneau gauche de la figure 1.17), observation faite également à

la même période sur les mesures de jonctions tunnel par le groupe de Miyakawa (1998).

Des mesures plus récentes du groupe d’A. Yazdani, réalisées avec une résolution ato-

mique sur de "grandes" échelles (quelques dizièmes de microns), ont mis en évidence

dans la phase pseudogap l’apparition d’un ordre de charge à un vecteur d’onde incom-

mensurable avec le réseau (d’amplitude proche de 4-5a, ou a représente la taille d’un

plan CuO2, panneau gauche de la figure 1.17 et Vershinin (2004)).
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Photoemission Résolue en Angle (ARPES) Il est difficile d’observer en ARPES

un pic de cohérence des quasiparticules dans l’état normal d’un échantillon sous-dopé.

En revanche, on remarque que le "front" de la réponse mesurée par cette technique,

situé au niveau de Fermi à haute température, se décale vers les basses énergies dans

les directions (π, 0) et (0,π) de l’espace réciproque (Ding 1996a).

(0,0) (!,0)

(0,!) (!, !)

Fig. 1.18: Panneau gauche : intensité du photocourant dans Bi-2212 sousdopé (Tc = 85

K), en fonction de la température dans différentes parties de la surface de Fermi. On

voit s’ouvrir un gap dès l’état normal (T = 120 K), et dans les directions (π, 0)(0,π) en

premier. Panneau droit : représentation schématique de la destruction de la surface de

Fermi dans les cuprates sous-dopés (entière au dessus de T ∗
, formation d’arcs dont la

taille diminue entre T ∗
et Tc, jusqu’à devenir des points à T = 0 (Norman 1998).

La perte d’états au niveau de Fermi mesurée par STM est donc également vu par

ARPES, mais l’information supplémentaire fournie par cette dernière est que l’ouver-

ture du pseudogap est anisotrope, et possède, comme nous le verrons dans la par-

tie 1.2.4, la même symétrie d que le gap supraconducteur. Cependant, contrairement

au gap supraconducteur, l’ouverture du pseudogap n’est que partielle sur la surface de

Fermi, qui prend alors à T < T ∗
une forme d’arcs déconnectés (Norman 1998), dont

la taille ne dépend, d’après de très récentes mesures, que du ratio T/T ∗
(Kanigel).

L’amplitude maximale du pseudogap, mesurée dans les directions (π, 0) et (0,π) aug-

mente linéairement lorsque le dopage diminue, de manière très similaire à T ∗ (voir par

exemple (Ino 1998)). On notera finalement que l’origine de la formation des arcs et de

l’ouverture du pseudogap est encore un sujet très débattu, et aucun consensus clair n’a

émergé quant à l’existence ou non, par exemple, de la formation d’un ordre de charge

dans les directions (π, 0) et (0,π), comme le suggèrent les données de STM (McElroy
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  Un gap s’ouvre au dessus de Tc 

  pseudogap anisotrope « d »: précurseur SC ? 



Le pseudogap 

STEP- 2013, august, Cargèse 

C. M. Varma, Nature 468, 148 (2010) 

Hole doped cuprates 

K.M.Shen et al. Science 2005 
M.Plate et al. PRL 2005 
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FIG. 18 Phase diagram of cuprates versus hole doping. Three
normal phases surround the superconducting dome: the pseu-
dogap phase, and two gapless phases - a strange metal ex-
hibiting a linear T resistance, and a more conventional Fermi
liquid.

ally stood for ‘rather vague bullshit’. Another wrote an
extended poem (based on Hiawatha!) claiming Anderson
was leading young physicists down the primrose path,
supposedly to their ultimate destruction (146). Still, its
profound influence in the field cannot be denied.

Anderson’s original theory was the so-called ‘uniform’
RVB state. In such a theory, free S=1/2 degrees of free-
dom (‘spinons’) form a Fermi surface. But shortly af-
terwards, it was realized that upon doping with carriers
(‘holons’), the lowest energy ground state was equivalent
to a d-wave liquid of spin singlets (147). In fact, RVB the-
ory gave one of the first predictions of the temperature-
doping phase diagram of the cuprates (Fig. 18), with four
regions identified (Fig. 19a). Below a temperature T∗

that decreases linearly with the doping, the d-wave spin
liquid would form, leading to a d-wave energy gap in the
spin excitation spectrum. Below a temperature Tcoh that
increases linearly with the doping, the charge degrees of
freedom would become phase coherent, leading to Fermi
liquid behavior. Below both temperatures, the combina-
tion of a d-wave spin singlet with charge coherence would
give rise to a d-wave superconductor, which thus forms
a ‘dome’ in the temperature-doping phase plane. Above
both temperatures, one would have instead a ‘strange
metal’ phase, exhibiting gapless non Fermi liquid behav-
ior. There are some photoemission data which are in
support of this picture for the phase diagram (148).

These ideas were emerging at about the same time
as NMR experiments were revealing the presence of a
‘spin gap’ that roughly had the doping dependence in-
dicated by the RVB theory (151). Subsequently, this
‘pseudogap’ was revealed by a number of other probes,
including c-axis infrared conductivity (152), photoemis-

T
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spin
gap

strange
metal

Fermi
liquid

superconductor

T

x

quantum
critical

ordered Fermi
liquid

Tc

FIG. 19 Two proposed phase diagrams of the cuprates - RVB
(149) (left) and quantum critical (150) (right).

FIG. 20 Zero energy intensity from photoemission for the
cuprate Bi2212 in the pseudogap phase, exhibiting an arc of
gapless excitations (159). The large Fermi surface in the gap-
less normal phase is shown as the black curve.

sion (153; 154; 155) and tunneling (156). Its observation
by angle resolved photoemission (ARPES) was particu-
larly illuminating, in that the inferred gap appeared to
be d-wave like in nature. How d-wave like is a matter of
continuing debate. What is clear is that the Fermi sur-
face is truncated in the pseudogap phase into ‘arcs’ cen-
tered at the nodes of the d-wave superconducting state
(157; 158) (Fig. 20). What is not clear yet is whether
these arcs represent one side of a closed pocket in mo-
mentum space (153) or a thermally broadened d-wave
node (159). The latter is consistent with RVB theory,
and further evidence has been given by its consistency
with some low temperature photoemission data for non
superconducting samples (160) which continue to exhibit
a d-wave like gap. But increasing attention has been
given to the former possibility.
If some kind of order were present in the pseudogap

phase, a reconstruction of the Fermi surface into smaller
pockets would be expected. For instance, simple Néel an-
tiferromagnetism in the doped case would initially give
rise to a small hole pocket centered around the (π/2,π/2)
points (161). In the early days of cuprates, such a pos-
sibility was actively discussed, and was implied as well
in the initial ARPES study of Marshall et al. (153). The
idea here is that the transition to long range magnetic or-
der is determined by coupling between the CuO2 planes,
since Heisenberg spins in two dimensions do not order.
As mentioned above, a few percent of doped holes is suf-
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Figure 1. Phase diagram of cuprate superconductors.  
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Scénario 1: 
Pseudogap précurseur SC 

Scénario 2: 
Pseudogap phase ordonnée 
en compétition 

PG PG 

  L’anisotropie du PG indique un lien avec le gap SC 
  Nature de la phase ordonnée ? 



Un ordre caché ? 

Nicolas Doiron-Leyraud et al, Nature 447 (2007) 
 
Fermi statistics: S. E. Sebastian, PRB 81, 140505 (2010) 
 
Fermi-liquid Relaxation rate: See Iman Mirzaei’s talk 

dHvA: Evidence for closed Fermi pockets 

Nicolas Doiron-Leyraud et al, Nature 447 (2007) 
 
Fermi statistics: S. E. Sebastian, PRB 81, 140505 (2010) 
 
Fermi-liquid Relaxation rate: See Iman Mirzaei’s talk 

dHvA: Evidence for closed Fermi pockets 

  Pseudogap: poche et et pas arc de Fermi 
  Signature d’une reconstruction électronique 
  Ordre à Q fini 

N. Doiron-Leyraud et al. Nature (2007) 



Ordres de charge/spin 

tunneling spectroscopy (STS) on the surface of
superconducting Bi2Sr2CuO6+d (2201) (30) and
Bi2Sr2CaCu2O8+d (2212) (31–33), but only limited
information is available from STS on the temper-
ature evolution of the CDW correlations in the
2201 and 2212 compounds, and the relation of
the STS data to the superconducting properties in
the bulk of these materials is obscured by elec-
tronic inhomogeneity.

The wave vector of the charge correlations
revealed in our experiments is in good agree-
ment with the nesting vector of the antibonding
Fermi surface sheets predicted by density func-
tional calculations for the 123 system (34). The
nesting vector connects those segments on the
2D Fermi surface that develop the maximal gap
amplitude in the d-wave superconducting state.
The CDW is thus a natural consequence of a
Fermi surface instability competing with super-
conductivity (35). The nearly critical nature of
the charge fluctuations (Fig. 4) suggests a CDW
ground state for underdoped 123 materials in
magnetic fields sufficient to weaken or obliterate
superconductivity, which may be responsible for
the Fermi surface reconstruction evidenced by
the quantum oscillation data (15). This scenario
agrees qualitatively with a recent NMR study of
YBa2Cu3O6.5 in high magnetic fields, which has
revealed signatures of a field-induced CDW (17),
and with theoretical work on this issue (16, 36).
In this precise case, the long range ortho-II oxy-
gen order and/or the high-field conditions may
favor the uniaxial commensurate charge modu-
lation with period 4a inferred from these data.
Further work is required to understand the inter-
play between the chain order and the in-plane
charge modulation and to reconcile our results
with the NMR data.

It is instructive to compare the charge corre-
lations revealed by our RXS experiments to the
p evolution of the spin correlations previously
determined by magnetic neutron scattering. For
p ≤ 0.08, these experiments revealed incommen-
surate magnetic order with wave vectors q∥ ¼
1
2 þ d, 12
! "

, where the incommensurability d in-
creases monotonically with p (27). Figure 3
shows that neither charge order nor low-energy
incommensurate charge fluctuations are present
in this doping range. For p > 0.08, the spin cor-
relations remain centered at wave vectors similar
to those at lower p, which bear no simple relation
to the wave vector of the REXS peaks determined
here (11–14). In this doping range, magnetic order
disappears (27, 37, 38), and the magnetic ex-
citation spectrum develops a large gap that in-
creases smoothly with p, in stark contrast to the
abrupt appearance and disappearance of the charge
density correlations with increasing p.

These considerations imply that spin and
charge order are decoupled in the 123 family,
which is quite different from in the 214 family
where they coexist microscopically in the striped
state. The small or absent intensity difference be-
tween the signal intensities at q// = (0.31,0) and
(0,0.31) (Fig. 2A) call into question the inter-
pretation of various transport anomalies in the
normal state of underdoped 123 compounds in
terms of stripe fluctuations (8, 9), at least in the
doping range where we observed the REXS
peaks. Although further experiments are required
to establish whether these peaks arise from an
equal distribution of fluctuating domains of two
uniaxial CDWswithmutually perpendicular prop-
agation vectors or from a single CDWwith biaxial
charge modulation, the isotropic intensity distri-
bution of the CDW signal shows that these fluc-

tuations cannot account for the strongly anisotropic
resistivity and Nernst effect in the normal state.
Despite these materials-specific variations, our
data imply that long-range CDW correlations are
a common feature of underdoped cuprates. De-
tailed microscopic calculations are required to as-
sess their relation to the pseudogap phenomenon
(1), the unusual q = 0 order (39), and the polar
Kerr effect measurements (40) recently reported
in some of these materials. The extensive q-, p-,
and T-dependent data set we report here is an
excellent basis for theoretical work on these
issues.
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FIG. 21 A schematic for stripes, where doped holes (dark
circles) form ribbons of charge separated by undoped antifer-
romagnetic regions (167).

ficient to disrupt this order. Still, fluctuating two dimen-
sional order is likely still present, and if the fluctuations
are slow enough, an apparent pocket might be formed
(162). The resulting ‘shadow’ bands were subsequently
seen by several ARPES studies (163), but in all cases
we know, they appear to actually be due to the crystal
structure - Bi2201, Bi2212, and LSCO have (π,π) as a
reciprocal lattice vector due to orthorhombic distortion
of the crystal lattice.

This picture, though, got further support when quan-
tum oscillation data finally emerged. In the early days
of cuprates, such studies were done, but led to inconclu-
sive results. But with the advent of high quality crystals,
the first definitive data appeared in 2007 (164). These
initial experiments were done on underdoped YBCO (the
so-called ortho-II phase with a well ordered crystal struc-
ture). What they revealed was a small pocket, first seen
by quantum oscillations of the Hall resistance. But inter-
estingly, the Hall resistance was negative, indicating that
the pocket was an electron pocket, despite the fact that
one is hole doping (165). This led to the speculation that
such pockets could arise from incommensurate order due
to the formation of magnetic stripes (166).

Such magnetic stripes were first identified by neu-
tron scattering (167) (Fig. 21). They are particularly
pronounced near 1/8 doping. There are two ways one
might think of such stripes. First, as an incommensu-
rate spin density wave state, similar to chromium. Here,
the incommensurability is due to doping, which moves
the chemical potential away from half filling for the hy-
bridized copper-oxide band. The other picture is a real
space one - doped holes do not go in homogeneously, but
in order to minimize their Coulomb repulsion, form rivers
of charge (168; 169). In between these rivers of charge
are undoped antiferromagnetic regions. Therefore, the
‘incommensurability’ in this case is due to a phase slip of
the simple Néel lattice when moving across the stripes.
The lack of observation of higher harmonics in the neu-
tron data seemed to suggest the former, but spectacular
scanning tunneling data seem most consistent with the
real space picture (170). The fact that quantum oscil-
lation data and the region of negative Hall effect seem
to form a dome around 1/8 doping definitely point to
stripes as the origin of the pockets (171).

The remaining question has concerned charge versus
magnetic stripes. In 1/8 doped LBCO (one of the few

materials where static stripe order is observed), charge
ordering occurs before spin ordering (172). Charge or-
dering as an explanation of the quantum oscillation re-
sults had been discounted because of difficulties in get-
ting an electron pocket in that case (166), but it was
subsequently shown that a nematic distortion (where x-
y degeneracy is broken) was sufficient to stabilize them
(173). In fact, one generally expects that as one reduces
the temperature, nematicity appears first, followed by
charge order and then eventually by spin order (170; 174).
Interestingly, data on the Nernst effect in YBCO are con-
sistent with nematicity setting in at the pseudogap tem-
perature, T∗ (175). But the problem with these scenarios
is that the electron pocket is in the (π, 0) region of the
Brillouin zone, exactly where ARPES sees a large pseu-
dogap.

Because of this, an alternate picture has emerged
(176). Here, the Fermi arcs instead of closing towards
the (π/2,π/2) points (which would form hole pockets)
instead close towards the (0, 0) point (to form electron
pockets). The translation of the arcs to form such a
pocket is achieved by having biaxial charge order. Re-
cently, such order has indeed been seen by x-ray studies
(177; 178). So, this would seem to settle matters, except
for the fact that no evidence for a closed pocket near the
(0, 0) point of the Brillouin zone has ever been inferred
from photoemission data.

To complicate matters, another type of novel magnetic
order has been seen to set in at T∗ (179). The origin of
this finding goes back to the early days of cuprates when
it was realized that in the ‘strange metal’ phase, the resis-
tivity was linear in temperature (180). Although at high
temperatures this is not a surprise (the electron-phonon
interaction can cause this), at lower temperatures this
was a puzzle, particularly since it was observed in sam-
ples of Bi2201 where Tc was very low. Although various
models have been suggested to account for this linearity,
the most straightforward one was proposed by Varma
and collaborators in 1989 (181). If one has a bosonic
spectrum that is flat in energy (ω), then the imaginary
part of the fermion self-energy due to interaction with
those bosons will be linear in ω. If one assumes a mo-
mentum independent interaction, then this translates to
a linear T resistivity. This has been denoted as marginal
Fermi liquid theory. The experimental motivation for
this conjecture was the roughly frequency independent
background observed in Raman scattering. Further sup-
port for this conjecture was found when a linear ω behav-
ior of the imaginary part of the self-energy was identified
by ARPES (182). A subsequent ARPES study was con-
sistent with this linear ω term being roughly momentum
independent (183).

Later, Varma proposed a microscopic theory along
these lines (184). His conjecture was that the single
band Hubbard model, which was the theoretical under-
pinning for most theories, was an inadequate model for
the cuprates. In particular, because of the hybridization
between the copper dx2−y2 orbital and the oxygen px and
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Coexistence magnétisme supra. 
75As NMR   

row central line at T=50 K confirms the good homogeneity
of our sample and the absence of any Co segregation. In the
high temperature paramagnetic regime, hloc is proportional to
the spin shift and the electron spin susceptibility, and the
values recorded are found consistent with those reported in
Ref. 16. At low temperature, all three lines strongly broaden,
the broadening being much more pronounced for H !c than
for H !ab. This broadening comes from the appearance of
large and distributed internal fields hloc. This distribution was
also observed at smaller Co dopings x=2% and 4%.16 It
signals the appearance of a distribution of the Fe moments
amplitude. The lineshape alone does not allow to decide the
corresponding magnetic pattern, but as shown hereafter, it is

the strong anisotropy of the linewidth which allows us to
conclude for an incommensurate Spin Density Wave. If it
were due instead to a non-periodic disorder induced by Co
dopants, such as a variation of the moment amplitude on Co
sites, it would not lead to the linewidth anisotropy and would
not be observed for x=2% as well.16 This continuous distri-
bution contrasts with the situation encountered in undoped
BaFe2As2, where an AF commensurate order leads to only
two values of hloc and thus two sets of well splitted lines
below TSDW for H !c. The T dependence of the SDW mag-
netization is monitored by that of the local field distribution
proportional to the NMR width. It is displayed in upper panel
of Fig. 3. The onset at TSDW=31 K fits well with the maxi-
mum detected in dynamics in Fig. 3 and is identical to that
found using resistivity and Hall effect.8

The whole NMR spectrum broadens homogeneously, and
we checked that no intensity is lost down to low tempera-
tures, implying that frozen moments develop on all the Fe
atoms. If even just a few percent of the sample was not
magnetically frozen, one should detect instead a narrow cen-
tral line on top of the broad distribution as in K-doped
BaFe2As2.10 This is clearly not the case as shown in both
directions of field in Fig. 2. As already stressed, the very
short range of the hyperfine interactions make 75As NMR
sensitive only to its near neighbor Fe, while muons in !SR
probe frozen moments far up to a few nm. So the present
NMR experiment allows us to rule out the existence of nano-
size segregation, and demonstrates the magnetic ordering at
all Fe sites. Together with the fact that the superconducting
fraction is about 100%, our data evidence atomic coexistence
of magnetism and superconductivity in the whole sample
below TC. Superconductivity is not observed to affect the
NMR spectral shape. This is not surprising since the SDW
field distribution dominates any static effect due to SC such
as vortex field distribution or decrease of the Knight Shift,
both only of the order of 10–30 G here.

The typical field distribution "H=2000 G for H !c mea-
sured at low temperature "Fig. 2# is much smaller than the
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  Raie RMN: élargissement homogène 
  Volume supra. 100% 
  Coexistence atomique magnétisme supra  
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Compétition magnétisme supra. 

  Réduction du moment magnétique sous Tc: compétition entres ordres électroniques 
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spin fluctuations, which might give us a chance to resolve the nature of the quantum
fluctuations from various types of spectroscopies. This paper is organized as follows.
Sec. 2 introduces the ferro-orbital order of Fe dxz and dyz orbitals as the effective
cause of the structural phase transition. In particular, we will show how this orbital
order arises from both the strong-coupling and the weak-coupling limit. In Sec. 3,
the elementary excitations from the quantum fluctuations associated with the ferro-
orbital order are discussed, and the experiments that might have detected these
orbital fluctuations are summarized in Sec. 4. Finally, a concluding remark is given
in Sec. 5.

2. Orbital Order

2.1. Structural phase transition and nematic order

The ground state manifold of the magnetically ordered phase of the iron-based
superconductors is O(3) × Z2, where O(3) refers to the arbitrary direction of the
ordered moment in spin space, whereas Z2 represents the two-fold degeneracy of
the ordering wave vector (π, 0) and (0,π). This magnetic order not only breaks the
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  Transition magnéto-structurale: ordre à Q≠0 + brisure de l’axe d’ordre 4 
  Compétition avec SC aussi 
  Role dans le mécanisme supra ? 
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Figure 3.12: (A) Evolution of the in-plane resistivity anisotropy as a function of
temperature and doping, expressed in terms of the resistivity ratio ρb/ρa. Structural,
magnetic and superconducting critical temperatures, shown as circles, squares and
triangles respectively. Significantly, the resistivity ratio deviates from unity at a
considerably higher temperature than TS, indicating that nematic fluctuations extend
far above the phase boundary. (B) The difference in the temperature derivative of ρa
and ρb (d(ρa − ρb)/dT , where ρa = ρa/ρa(300K), ρb = ρb/ρ(300K) ) as a function of
temperature and doping. The resistivity has been normalized by its room temperature
value to avoid uncertainty due to geometric factors. Regions of highest intensity are
those regions where ρb appears to be insulator-like (dρb/dT < 0) while ρa remains
metallic (dρa/dT > 0). This behavior is clearly correlated with the nematic phase
between the structural and magnetic transitions.

The temperature dependence of the resistivity (Fig.3.11) is especially striking. At

high temperatures, the resistivity is isotropic and starts off as almost linear. For

currents running in the b-direction the resistivity deviates from this behavior at a

temperature significantly above TS and increases steeply with decreasing tempera-

ture. This insulator-like behavior is cut off near TN for the lowest doping levels, but

extends to much lower temperatures for larger cobalt concentrations. In contrast,

for currents flowing in the a direction, the resistivity behaves similarly to a normal

metal, continuing to decrease with decreasing temperature over the entire tempera-

ture range, except for a small jump near TN . The superconducting transition at the

lowest temperatures causes both ρa and ρb to drop to zero. The difference of the

temperature derivatives of ρb and ρa (normalized by the room temperature value)

shown in Fig. 3.12B, reveals a strong correlation with the orthorhombic distortion.
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Figure 3.11: Temperature dependence of the in-plane resistivity ρa (green) and ρb
(red) of Ba(Fe1−xCox)2As2 for Co concentrations from x = 0 to 0.085. Solid and
dashed vertical lines mark critical temperatures for the structural and magnetic phase
transitions TS and TN respectively. Values of TN for stressed samples, obtained from
the peak in the derivative of the resistivity, are identical to those found for unstressed
samples, indicating that the uni-axial pressure serves as a weak symmetry breaking
field to orient twin domains without affecting the bulk magnetic properties. The uni-
axial stress does, however, affect the superconducting transitions in some underdoped
samples, inducing a partial superconducting transition for x = 0.016 and 0.025, which
are not observed for unstressed crystals. Diagrams in the right-hand panel illustrate
how measurements of ρa and ρb were made. Dark arrows indicate the direction in
which uni-axial pressure was applied, and smaller arrows indicate the orientation of
the a and b crystal axes. In all cases, the same samples and the same contacts (shown
in gold for a standard 4-point configuration) were used for both orientations.
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Figure 3.11: Temperature dependence of the in-plane resistivity ρa (green) and ρb
(red) of Ba(Fe1−xCox)2As2 for Co concentrations from x = 0 to 0.085. Solid and
dashed vertical lines mark critical temperatures for the structural and magnetic phase
transitions TS and TN respectively. Values of TN for stressed samples, obtained from
the peak in the derivative of the resistivity, are identical to those found for unstressed
samples, indicating that the uni-axial pressure serves as a weak symmetry breaking
field to orient twin domains without affecting the bulk magnetic properties. The uni-
axial stress does, however, affect the superconducting transitions in some underdoped
samples, inducing a partial superconducting transition for x = 0.016 and 0.025, which
are not observed for unstressed crystals. Diagrams in the right-hand panel illustrate
how measurements of ρa and ρb were made. Dark arrows indicate the direction in
which uni-axial pressure was applied, and smaller arrows indicate the orientation of
the a and b crystal axes. In all cases, the same samples and the same contacts (shown
in gold for a standard 4-point configuration) were used for both orientations.

Dégrés de liberté structuraux / orbitaux 

  Très forte anisotropie électronique (nématique) 
  Transition structurale pilotée par les degrés de  
liberté électroniques (spin ou orbitale) 
  Fluctuations magnétiques QAF et orbitales/nématiques Q=0 
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  Ordre de charge ferro-quadrupolaire 

  Pas de degrés de liberté de spin 

Matsubayashi et al. (2012) 
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